$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Influence of Nicorandil on Aortic Strip's Contractility and Blood Pressure of the Rat

The journal of applied pharmacology : the official journal of the Korean Society of Applied Pharmacology, v.13 no.1, 2005년, pp.48 - 58  

Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University) ,  Kim, Yong-Jik (Department of Pharmacology, College of Medicine, Chosun University) ,  Hong, Soon-Pyo (Department of Internal Medicine (Cardiology), Chosun University)

Abstract AI-Helper 아이콘AI-Helper

The present study was conducted to investigate the effects of nicorandil on arterial blood pressure and vascular contractile responses in the normotensive anesthetized rats and to establish the mechanism of action. Nicorandil (30~300 ${\mu}g/kg$) given into a femoral vein of the normotens...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In view of the current pharmacological actions of nicorandil, the present study was therefore designed to investigate whether it can produce the hypotensive action in the normotensive anes­ thetized rats and the vasorelaxation on phenylephrine-induced contractile response of the isolated rat aortic strips, and to establish its mechanism of action, in addition to the well- known K^p-channel opening.

대상 데이터

  • Mature male Sprague-Dawley rats, weighing 150 to 350 g, were used in the experiment. The animals were housed individ­ ually in separate cages, and food (Cheil Animal Chow) and tap water were allowed ad libitum for at least a week to adapt to experimental circumstances.

데이터처리

  • The statistical significance between groups was determined by the Student's t- and ANOVA- tests. A P-value of less than 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. Ablad, B., Borg, K. O., Carlsson, E., Johnson, G., Malmfors, L. and Regardh, C. G. (1975). A survey of the pharmacological properties of metoprolol in animals and man. Acta. Pharmacol. Toxicol.(Copenh) 36(5), 7-23 

  2. Akai, K., Wang, Y., Sato, K., Sekiguchi, N., Sugimura, A., Kumagai, T., Komaru, T., Kanatsuka H. and Shirato, K. (1995). Vasodilatory effect of nicorandil on coronary arterial microvessels: Its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J. Cardiovasc. Pharmacol. 26, 541-547 

  3. Arena, J. P. and Kass, R. S. (1989). Activation of ATP-sensitive $K^+$ channels in heart cells by pinacidil: dependence on ATP. Am. J. Physiol. 257, H2092-H2096 

  4. Aschroft, F. M. (1990). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97-118 

  5. Bevan, J. A. (1982). Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: antagonism of extrinsic but not intrinsic maintained tone. Am. J. Cardiol. 46, 519-524 

  6. Bolton, T. M. (1979). Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 3, 606-718 

  7. Brayden, J. E. (1996). Potassium channels in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 23, 1069-1076 

  8. Chujo, M., Mori, H., Tanaka, E., Nakazawa, H. and Okino, H. (1994). Inhibitory effects of nicorandil on sympathetic coronary vasoconstriction. Cardiovasc. Res. 28(6), 917-22 

  9. Constantine, J. W., Mcshane, W. K., Scriabine, A. and Hess, H. J. (1973). Analysis of the hypotensive action of prazosin. In Hypertension: Mechanisms and Management (G. Onesti, K. E. Kim, J. H. Moyer, Ed.), pp. 429. Grume & Stratton Inc., New York 

  10. Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends. Pharmacol. Sci. 9, 21-28 

  11. Davie, C. S., Kubo, M. and Standen, N. B. (1998). Potassium channel activation and relaxation by nicorandil in rat small mesenteric arteries. Br. J. Pharmacol. 125(8), 1715-1725 

  12. Dube, G. P., Baik, Y. H. and Schwartz, A. (1985). Effects of novel calcium channel agonist dihydropyridine analogue, Bay K 9644, on pig coronary artery: Biphasic mechanical response and paradoxical potentiation of contraction by diltiazem and nimodipine. J. Cardiovasc. Pharmacol. 7, 377-389 

  13. Dube, G. P., Baik, Y. H., Van Breemen, C. and Schwartz, A. (1988). Effects of isosorbide dinitrate and diltiazem on $Ca^{2+}$ flux and contraction in artery. European J. Pharmacol. 145, 39-47 

  14. Edwards, G. and Weston, A. H. (1990). Structure-activity relationships of $K^+$ channel openers. Trends. Pharmacol. Sci. 11, 417-422 

  15. Edwards, G. and Weston, A. H. (1993). The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 33, 597-637 

  16. Endoh, M., and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319 

  17. Findlay, I. (1987). ATP-sensitive $K^+$ channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations. Pflug. Arch. 410, 313-320 

  18. Fink, R. H. A. and Stephenson, D. G. (1987). $Ca^{2+}$ -movements in muscle modulated by the state of $K^+$ -channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 409, 374-380 

  19. Fleckenstein, A. (1977). Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17, 149-166 

  20. Forestier, C., Pierrard, J. and Vivaudou, M. (1996). Mechanism of action of K channel openers on skeletal muscle $K_{ATP}$ channels. Interactions with nucleotides and protons. J. Gen. Physiol. 107, 489-502 

  21. Frampton, J., Buckley M. M. and Fitton, A. (1992). Nicorandil. A review of its pharmacology and therapeutic effects in angina pectoris. Drugs 44, 625-655 

  22. Freis, E. E., Mackey, J. D. and Oliver, W. F. (1951). The effect of 'sympatholytic' drugs on the cardiovascular responses to epinephrine and norepinephrine in man. Cir. Res. 3, 254 

  23. Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito Y. and Kuriyama, H. (1981). Effects of 2-nicotinarnidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260 

  24. Goldschmidt, M., Landzberg B. R. and Frishman, W. H. (1996). Nicorandil. A potassium channel opening drug for treatment of ischemic heart disease. J. Clin. Pharmacal. 36, 559-572 

  25. Hamada, E., Takikawa, R., Ito, H., Iguchi, M., Terano, A., Sugimoto, T. and Kurachi, Y. (1990). Glibenclamide specifically blocks ATP-sensitive $K^+$ channel current in atrial myocytes of guinea pig heart. Jpn. J. Pharmacal. 54, 473-477 

  26. Hiraoka, M. and Fan, Z. (1989). Activation of ATP-sensitive outward $K^+$ current by nicorandil (2-nicotinamidoethyl mitrate) in isolated ventricular myocytes. J. Pharmacal. Exp. Ther. 250, 278-285 

  27. Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacal. 5, 364-370 

  28. Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7 

  29. Horie, M., Irisawa, H. and Noma, A. (1987). Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channels in guinea-pig ventricular cells. J. Physiol. 387, 251-272 

  30. Imai, S. and Kitagawa. (1981). A comparison of the differential effects of nitroglycerin, nifedipine, and papaverine on contractures induced in vascular and intestinal smooth muscle by potassium and lanthanum. Jap. J. Pharmacol. 31, 193 

  31. Ito, Y., Kitamura, K. and Kuriyama, H. (1980a). Actions of nitroglycerin on the membrane and mechanical properties of smooth muscles of the coronary artery of the pig. Br. J. Pharmacol. 70, 197-204 

  32. Ito, Y., Kitamura, K. and Kuriyama, H. (1980b). Nitroglycerin and catecholamine actions on smooth muscle cells of cannine coronary artery. J. Physiol. (London) 309, 171-183 

  33. Itoh, T., Furukawa, K., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig arid porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218(1), 260-270 

  34. Kawai, Y., Hayashi, Y., Ito, I., Kamibayashi, T., Takada, K., Kagawa, K., Yamatodani, A. and Mashimo, T. (2002). Nicorandil prevents epinephrine-induced arrhythmias in halothane-anesthetized rats by nitric oxide-dependent mechanism. Naunyn Schmiedebergs Arch. Pharmacol. 366 (6), 522-527 

  35. Kim, J. M., Park, K. O. and Baik, Y. H. (1989). Effects of antiepileptic drugs on contractile responses of vascular smooth muscles. Chonnam J. Med. Sci. 2(1), 50-59 

  36. Kimura, M., Nojima, H., Muroi, M. and Kimura, I. (1991). Mechanism of the blocking action of ${\beta}$ -nicorandil on the nicotinic acetylcholine receptor channel in mouse skeletal muscles. Neuropharmacology 30, 835-841 

  37. Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633 

  38. Kwak, Y. G., Park, S. K., Kang, H. S., Kim, J. S., Chae, S. W., Cho, K. P., Yoo, S. E. and Kim, D. (1995). KR-30450, a newly synthesized benzopyran derivative, activates the cardiac ATP-sensitive $K^+$ channel. J. Pharmacol. Exp. Ther. 275, 807-812 

  39. Liu, Y., Ren, G., O'Rourke, B., Marban, E. and Seharaseyon, J. (2001). Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol. Pharmacol. 59(2), 225-230 

  40. Longman, S.D. and Hamilton, T.C., (1992). Potassium channel activator drugs: mechanism of action, pharmacological properties, and therapeutic potential. Med. Res. Rev. 12, 73-148 

  41. Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for $K^+$ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903 

  42. Nelson, M. T. and Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799-C822 

  43. Ogino, K., Kinugawa, T., Noguchi, N., Kitamura, H., Matsumoto, T., Miyakoda, H., Kotake, H. and Mashiba, H. (1992). Suppression of sympathetic nervous system activity by nicorandil during exercise. Gen. Pharmacol. 23(3), 325-329 

  44. Ohya, Y., Setoguchi, M., Fujii, K., Nagao, T, Abe, I. and Fujishima, M. (1996). Impaired action of levcromakalim on ATP-sensitive $K^+$ channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension 27, 1234-1239 

  45. Sanguinetti, M. C., Scott, A. L., Zingaro, G. L. and Siegl, P. K. (1988). BRL 34915 (cromakalim) activates ATP-sensitive $K^+$ current in cardiac muscle. Proc. Natl. Acad. Sci. USA 85, 8360-8364 

  46. Schwartz, A. and Taira, N. (1983). Calcium channel-blocking drugs: A novel intervention for the treatment of cardiac disease. eire. Res. (American Heart association Monograph) 52, 1-183 

  47. Schwartz, A. and Triggle, D. J. (1984). Cellular action of calcium blocking drugs. Ann. Rev. Med. 35, 325-339 

  48. Shen, W. K., Tung, R. T., Machulda, M. M. and Kurachi, Y. (1991). Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive $K^+$ channels. A comparison with pinacidil and lemakalim. Cire. Res. 69, 1152-1158 

  49. Shibata, S., Satake, N., Takagi, T, Kerfoot, F. and Suh, T. K. (1984). Relaxing effect of nicorandil (N-2-(hydroxyethyl)nicotinamide nitrate), a new anti-angina agent, on the isolated vascular smooth muscle. Eur. J. Pharmacol. 99(23), 219-26 

  50. Smith, J. M. and Wahler, G M. (1996). ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic rats. Mol. Cell. Biochem. 158, 43-51 

  51. Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, pp. 132 

  52. Thuringer, D., Cavero, I. and Coraboeuf, E. (1995). Time-dependent fading of the activation of $K_{ATP}$ channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes. Br. J. Pharmacol. 115, 117-127 

  53. Tuttle, J. B., Spitsbergen, J. M., Stewart, J. S., McCarty, R. M. and Steers, W. D. (1995). Altered signalling in vascular smooth muscle from spontaneously hypertensive rats may link medial hypertrophy, vessel hyperinnervation and elevated nerve growth factor. Clin. Exp. Pharmacol. Physiol. 1, S117-S119 

  54. Watkins, R. W. and Davidson, I. W. F. (1980). Comparative effects of nitroprusside and nitrogiycerin: Actions on phasic and tonic components of arterial smooth muscle contraction. European J. Pharmacol. 62, 191-200 

  55. Zhou, Q., Satake, N. and Shibata, S. (1995). The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery. Eur. J. Pharmacol. 273, 153-159 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트