• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Characteristics of biological $CO_2$ fixation by Chlorella sp. HA-1 were investigated in a semi-continuous and series reactor system using an internally illuminated photobioreactor to overcome shortcomings of physicochemical technologies such as adsorption and membrane separation. High $CO_2$ fixation rate was achieved in the semi-continuous reactor system, in which the dilution ratios of the culture medium were controlled. The average $CO_2$ fixation rate was maintained almost constantly when the dilution ratio increased by 0.1 increment from the initial value of 0.5. The total removal efficiency of $CO_2$ was enhanced by employing a series reactor system. The average $CO_2$ fixation rate increased until 4.013 g $CO_2\;day^{-1}$ in a series operation of four reactors, compared to 0.986 g $CO_2\;day^{-1}$ in a batch operation mode. The total $CO_2$ fixation rate was proportional to the number of reactors used in the series reactor system. In the series reactor system of semi-continuous operation, a large amount of $CO_2$ was removed continuously for 30 days. These results showed that the present reactor systems are efficient and economically feasible for a biological $CO_2$ fixation.

참고문헌 (18)

  1. Ral, L. C., H. D. Kumar, F. H. Mohn, and C. J. Soeder. 2000. Services of algae to the environment. J. Microbiol. Biotechnol. 10: 119-136 
  2. Negoro, M., N. Shioji, Y. Ikuta, T. Makita, and M. Uchiumi. 1992. Growth characteristics of microalgae in high-concentration $CO_2$ gas, effects of culture medium trace components, and impurities thereon. Appl. Biochem. Biotech. 34/35: 681-692 
  3. Samson, R. and A. Leduy. 1985. Multistage continuous cultivation of blue-green alga Spirulina maxima in flat tank photobioreactors with recycle. Can. J. Chem. Eng. 63: 105-112 
  4. Yun, Y.-S. and J. M. Park. 1997. Development of gas recycling photobioreactor system for micro algal carbon dioxide fixation. Kor. J. Chem. Eng. 14: 297-300 
  5. Lee, J. S., D. K. Kim, J. P. Lee, S. C. Park, J. H. Koh, and S. J. Ohh. 2001. $CO_2$ fixation by Chlorella KR-1 using flue gas and its utilization as a feedstuff for chicks. J. Microbiol. Biotechnol. 11: 772-775 
  6. Mori, Kei. 1995. Photoautotrophic bioreactor using visible solar rays condensed by fresnel lenses and transmitted through optical fibers. Biotechnol. Bioeng. Symp. 15: 331-345 
  7. Yanagi, M., Y. Watanabe, and H. Saiki. 1995. $CO_2$ fixation by Chlorella sp. HA-1 and its utilization. Energy Convers. Mgmt. 36: 713-716 
  8. Ogbonna, J. C., H. Yada, H. Masui, and H. Tanaka. 1996. A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J. Ferment. Bioeng. 82: 61-67 
  9. Jin, E., J. E. W. Polle, H. K. Lee, S. M. Hyun, and M. Chang. 2003. Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol. 13: 165-174 
  10. Kim, S.-J., G.-J. Kim, D.-H. Park, and Y.- W. Ryu. 2003. High-level production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol. 13: 175-181 
  11. Hirata, S., M. Taya, and S. Tone. 1996. Characterization of Chlorella cell cultures in batch and continuous operations under a photoautotrophic condition. J. Chem. Eng. Japan 29: 953-959 
  12. Watanabe, Y. and D. O. Hall. 1996. Photosynthetic production of the filamentous cyanobacterium Spirulina platens is in a cone-shaped helical tubular photobioreactor. Appl. Microbiol. Biotechnol. 44: 693-698 
  13. Watanabe, Y., N. Ohmura, and H. Saiki. 1992. Isolation and determination of cultural characteristics of microalgae which functions under $CO_2$ enriched atmosphere. Energy Convers. Mgmt. 33: 545-552 
  14. Suh, I. S. and C.-G. Lee. 2003. Photobioreactor engineering: Design and performance. Biotechnol. Bioprocess Eng. 8: 313-321 
  15. Lee, J.-Y., T.-S. Kwon, H.-J. Kim, and J.-W. Yang. 2003. Effect of light on growth of Chlorella sp. HA-1 in largescale photobioreactors for biological $CO_2$ fixation. Kor. J. Biotechnol. Bioeng. 18: 340-345 
  16. Ogbonna, J. C. and H. Tanaka. 1997. Industrial-size photobioreactors. Chemtech. 43-49 
  17. Karube, I., T. Takeuchi, and D. J. Barnes. 1992. Biotechnological reduction of $CO_2$ emissions. Adv. Biochem. Eng. Biotechnol. 46: 63-78 
  18. Pulz, O. and K. Scheibenbogen. 1998. Photobioreactors: Design and performances with respect to light energy input. Adv. Biochem. Eng. Biotechnol. 59: 124-148 

이 논문을 인용한 문헌 (4)

  1. 2006. "" Journal of microbiology and biotechnology, 16(12): 1947~1953 
  2. 2006. "" Journal of microbiology and biotechnology, 16(2): 240~246 
  3. 2009. "" Journal of microbiology and biotechnology, 19(10): 1206~1212 
  4. Lee, Tae-Yoon ; Choi, Bo-Ram ; Lee, Jea-Keun ; Lim, Jun-Heok 2011. "Cultivation of Chlorella Sp. Using Light Emitting Diode" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 33(8): 591~597 


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일