$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Purification and Characterization of Pyrimidine Nucleotide N-Ribosidase from Pseudomonas oleovorans

Abstract

Pyrimidine nucleotide N-ribosidase (pyrimidine 5'-nucleotide phosphoribo(deoxyribo)hydrolase/pyrimidine 5'-nucleotide nucleosidase, EC 3.2.2.10) catalyzes the breakdown of pyrimidine 5'-nucleotide into pyrimidine base and ribose(deoxyribo)-5-phosphate. However, detailed characteristics of the enzyme have not yet been reported. The enzyme was purified to homogeneity 327.9-fold with an overall yield of $6.1\%$ from Pseudomonas oleovorans ATCC 8062. The enzyme catalyzed cytidine monophosphate (CMP) and uridine monophosphate (UMP), but not adenosine monophosphate (AMP) and guanosine monophosphate (GMP). The enzyme optimally metabolized CMP at pH 6.0 and UMP at around 8.5, and the optimum temperature for the overall enzyme reaction was found to be $37^{\circ}C$. The $K_m$ values of the enzyme for CMP (at pH 6.0) and UMP (at pH 8.5) were 1.6 mM and 1.1 mM, respectively. AMP, deoxyCMP, and deoxyUMP were very effective inhibitors of the reaction. Double-reciprocal plots obtained in the absence and in the presence of AMP revealed that this inhibitory effect was of the mixed competitive type with respect to the breakdown of CMP and of the noncompetitive type with respect to the breakdown of UMP. In the presence of AMP, the enzyme followed sigmoid kinetics with respect to each substrate.

저자의 다른 논문

참고문헌 (15)

  1. Agarwal, D. P., G. G. Sanwal, and P. S. Krishnan. 1963. Improved paper-chromatographic separation of sugar phosphates by using borate-impregnated paper. Analyst 88: 969-970 
  2. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. 56: 658-666 
  3. Sakai, T., T. Watanabe, and I. Chibata. 1968. Metabolism of pyrimidine nucleotides in bacteria. J. Ferm. Technol. 46: 202-213 
  4. Sakai, T., T. Watanabe, and I. Chibata. 1971. Metabolism of pyrimidine nucleotides in bacteria. (III) Enzymatic production of ribose-5-phosphate from uridine-5-monophosphate by Pseudomonas oleovorans. Appl. Microbiol. 22: 1085-1090 
  5. Sakai, T., T. Yu, and S. Omata. 1976. Distribution of enzymes related to cytidine degradation in bacteria. Agric. Biol. Chem. 40: 1893-1895 
  6. Yu, T. S. 2004. Optimization of culture conditions for the production of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovarans. J. Life Sci. 14: 608-613 
  7. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23 
  8. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 
  9. Imada, A., M. Kuno, and S. Igarasi. 1967. Degradation of pyrimidine nucleotides by enzyme systems of Streptomyces. I. Ribose-5-phosphate formation from pyrimidine nucleotides. J. Gen. Appl. Microbiol. 13: 255-265 
  10. Kim, D. Y., J. S. Nam, Y. H. Rhee, and Y. B. Kim. 2003. Biosynthesis of novel poly(3-hydroxyalkanoates) containing alkoxy groups by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 13: 632-635 
  11. Davis, B. J. 1964. Disc electrophoresis. 2. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121: 404-427 
  12. Sakai, T., T. Watanabe, and I. Chibata. 1971. Metabolism of pyrimidine nucleotides in bacteria. (II) Studies on the regulation system of the degradation of nucleotides in Pseudomonas oleovorans. J. Ferm. Technol. 49: 488-498 
  13. Kim, J. and T. S. Yu. 2004. Purification and properties of intracellular cytosine deaminase from Chromobacterium violaceum YK 391. J. Microbiol. Biotechnol. 14: 1182-1189 
  14. Neuhard, J. 1968. Pyrimidine nucleotide methabolism and pathways of thymidine triphosphate biosynthesis in Salmonella typhimurium. J. Bacteriol. 96: 1519-1527 
  15. Imada, A. 1967. Degradation of pyrimidine nucleotides by enzyme systems of Streptomyces. II. Pyrimidine 5'-nucleotide phosphoribo(deoxyribo) hydrolase of Streptomyces virginiae. J. Gen. Appl. Microbiol. 13: 267-278 

이 논문을 인용한 문헌 (3)

  1. 2006. "" Journal of microbiology and biotechnology, 16(7): 1144~1148 
  2. 2007. "" Journal of microbiology and biotechnology, 17(12): 2027~2032 
  3. 2007. "" Journal of microbiology and biotechnology, 17(9): 1504~1512 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일