$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Relationship Between Enhancement of Electrostriction and Decrease of Activation Energy in Porcine Pancreatic Lipase Catalysis

Journal of microbiology and biotechnology, v.15 no.3, 2005년, pp.587 - 594  

PARK HYUN (Korea Polar Research Institute, Korea Ocean Research & Development Institute) ,  LEE KI-SEOG (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute) ,  PARK SEON-MI (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute) ,  LEE KWANG-WON (Division of Food Science, Korea University) ,  KIM AUGUSTINE YONGHWI (Department of Food Science & Technology, Sejong University) ,  CHI YOUNG-MIN (Division of Biotechnology and Genetic Engineering, Korea Ocean Research & Development Institute)

Abstract AI-Helper 아이콘AI-Helper

The contribution of electrostriction of water molecules to the stabilization of the negatively charged tetrahedral transition state of a lipase-catalyzed reaction was examined by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between...

주제어

참고문헌 (32)

  1. Britto, P. J., L. Knipling, and J. Wolff. 2002. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 277: 29018-29027 

  2. Burdette, R. A. and D. M. Quinn. 1986. Interfacial reaction dynamics and acylenzyme mechanism for lipoprotein lipasecatalyzed hydrolysis of lipid p-nitrophenyl ester. J. Biol. Chem. 261: 12016-12021 

  3. Castaneda-Agullo, M. and L. M. Del-Castillo. 1958. The influence of the medium dielectric strength upon trypsin kinetics. J. Gen. Physiol. 42: 617-634 

  4. Compton, P. D., R. J. Coli, and A. L. Fink. 1986. Effect of methanol cryosolvents on the structural and catalytic properties of bovine trypsin. J. Biol. Chem. 261: 1248-1252 

  5. Eckert, C. A. 1972. High pressure kinetics in solution. Annu. Rev. Phys. Chem. 23: 239-264 

  6. Fink. A. L. 1974. The trypsin-catalyzed hydrolysis of N-benzyloxycarbonyl-L-lysine p-nitrophenyl ester in dimethylsulfoxide at sub-zero temperatures. J. Biol. Chem. 249: 5027-5032 

  7. Hermoso, J., D. Pignol, B. Kerfelec, I. Crenon, C. Chapus, and J. C. Fontecilla-Camps. 1996. Lipase activation by nonionic detergents: The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem. 271: 18007-18016 

  8. Isaacs, N. S. 1981. Effect of pressure on rate process, pp. 181-354. In: Liquid Phase High-Pressure Chemistry. John Wiley & Sons, New York, U.S.A 

  9. Kim, J. B. and J. S. Dordick. 1993. Pressure affects enzyme function in organic media. Biotechnol. Bioeng. 42: 772-776 

  10. Lee, K. S., Y. M. Chi, and Y. G. Yu. 2002. Effect of pressure on catalytic properties of glutamate racemase from Aquifex pyrophilus, an extremophilic bacteria. J. Microbiol. Biotechnol. 12: 149-152 

  11. Liu, R., R. Ravindernath, C. E. Ha, C. E. Petersen, N. V. Bhagavan, and R. G. Eckenhoff. 2002. The role of electrostatic interaction in human serum albumin binding and stabilization by halothane. J. Biol. Chem. 277: 36373-37379 

  12. Low, P. S. and G. N. Somero. ]975. Activation volumes in enzyme catalysis: Their sources and modification by lowmolecular-weight solutes. Proc. Nat. Acad. Sci. USA 72: 3014-3018 

  13. Low, P. S. and G. N. Somero. 1975. Protein hydration changes during catalysis: A new mechanism of enzyme rateenhancement and ion activation/inhibition of catalysis. Proc. Nat. Acad. Sci. USA 72: 3305-3309 

  14. Maurel, P. C. 1978. Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology. J. Biol. Chem. 253: 1677-1683 

  15. Michels, P. C., J. S. Dordick, and D. S. Clark. 1997. Dipole formation and solvent electrostriction in subtilisin catalysis. J. Am. Chem. Soc. 119: 9331-9336 

  16. Moreau, H., A. Moulin, Y. Gargouri, J. Noel, and R. Verger. 1991. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry 30: 1037-1041 

  17. Morild, E. 1981. The theory of pressure effects on enzymes. Adv. Prot. Chem. 34: 93-166 

  18. Nakasako, M., M. Odaka, M. Yohda, N. Dohmae, K. Takio, N. Kamiya, and J. Endo. 1999. Tertiary and quaternary structure of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: Roles of hydration water molecules in stabilizing the structure and the structural origin of the substrate specificity of the enzyme. Biochemistry 38: 9887-9898 

  19. Nicolas, A., M. Egmond, T. Verrips, J. Vlieg, S. Longhi, C. Cambillau, and C. Martinez. 1996. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistly 35: 398-410 

  20. Park, H., K. S. Lee, Y. M. Chi, and S. W. Jeong. 2005. Effects of methanol on the catalytic properties of porcine pancreatic lipase. J. Microbiol. Biotechnol. 15: 296-301 

  21. Park, H. and Y. M. Chi. 1998. Distinction between the influence of dielectric constant and of methanol concentration on trypsin-catalyzed hydrolysis and methanolysis. J. Microbiol. Biotechnol. 8: 656-662 

  22. Petersen, M. T. N., P. Fojan, and S. B. Petersen. 2001. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 85: 115-147 

  23. Reichardt, C. 1988. Solvent effects on the rate of homogeneous chemical reactions, pp. 121-284. In: Solvents and Solvent Effects in Organic Chemistry, 2nd Ed., VCH, Weinheim 

  24. Svendsen, A. 2000. Lipase protein engineering. Biochim. Biophys. Acta 1543: 223-238 

  25. Szeltner, Z., D. Rea, V. Renner, L. Juliano, V. Fulop, and L. Polgar. 2003. Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding. J. Biol. Chem. 278: 48786-48793 

  26. Szeltner, Z., D. Rea, Y. Renner, V. Fulop, and L. Polgar. 2002. Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. J. Biol. Chem. 277: 42613-42622 

  27. Taniguchi, Y. and S. Makimoto. 1988. High pressure studies of catalysis. J. Mol. Cat. 47: 323-334 

  28. Van-Eldik, R., T. Asano, and W. J. Le Noble. 1989. Activation and reaction volumes in solution. Chem. Rev. 89: 549-688 

  29. Warshel, A. 2000. Perspective on the energetics of enzymatic reaction. Theor. Chem. Acc. 103: 337-339 

  30. Warshel, A. and S. Russel. 1986. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J. Am. Chem. Soc. 108: 6569-6579 

  31. Xu, Z. F., A. Affleck, P. Wangikar, V. Suzawa, J. S. Dordick, and D. S. Clark. 1994. Transition state stabilization of subtilisins in organic media. Biotechnol. Bioeng. 43: 515-520 

  32. Zandonella, G., P. Stadler, L. Haalck, F. Spener, F. Paltaut, and A. Hermetter. 1999. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262: 63-69 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트