• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Small peptides synthesized by nonribosomal peptide synthetases (NRPSs) genes are found in bacteria and fungi. While some microbial taxa have few, others make a large number and variety. However, biochemical characterization of the products synthesized by NPRS demands a great deal of efforts. Since the completion of genome projects of numerous microorganisms, the numbers of available NRPSs genes are being expanded. Prediction of the peptides encoded by NRPS could save time and efforts. We chose the NRPS gene from Bradyrhizobium japonicum as a model to predict the peptide structure encoded by NRPS genes. Using computational analyses, the domain structure of this gene was defined, and the structure of a peptide synthesized by this NRPS was deduced. It was found that it encoded a tripeptide consisting of proline-serine-phenylalanine. This method would be helpful to predict the structure of small peptides with various NPRS genes from the genome sequence.

참고문헌 (17)

  1. Challis, G. L., J. Ravel, and C. A. Townsend. 2000. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7: 211-224 
  2. Shen, B., D. L. Sancherz, C. Edwards, D. J. Chen, and M. J. M. Murrell. 2002. Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC 15003. J. Nat. Prod. 65: 422-431 
  3. Tognoni, A., E. Franchi, C. Magistrelli, E. Colombo, P. Cosmina, and G. Grandi. 1995. A putative new peptide synthase operon in Bacillus subtilis: Partial characterization. Microbiology 141: 645-648 
  4. Kim, K.-R., I. H. Lee, and J.-W. Suh. 2001. A putative peptide synthetase from Bacillus subtilis 713 recognizing L-Iysine, L-tryptophan, and L-glutaminc acid. J. Microbiol. Biotechnol. 11: 798-803 
  5. Turgay, K., M. Krause, and M. A. Marahiel. 1992. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol. Microbiol. 6: 529-546 
  6. Conti, E., T. Stachelhaus, M. A. Marahiel, and P. Brick. 1997. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16: 4174-4183 
  7. Challis, G. L. and J. Ravel. 2000. Coelichin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: Structure prediction from the sequence of its non-risobosomal peptide synthetase. FEMS Microb. Lett. 187: 111-114 
  8. Becker, J. E., R. E. Moore, and B. S. Moore. 2004. Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: Molecular basis for imine macrocyclization. Gene 325: 35-42 
  9. Konz, D. and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39-R48 
  10. McMorran, B. J., M.E. Merriman, I. T. Rombel, and I. L. Lamont. 1996. Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176: 55-59 
  11. Hori, K., Y. Yamamoto, T. Minetoki, T. Kurotsu, M. Kanda, S. Miura, K. Okamura, J. Furuyama, and Y. Saito. 1989. Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J. Biochem. Tokyo 106: 639-645 
  12. Marahiel, M. A., T. Stachelhaus, and H. D. Mootz. 1997. Modular peptide synthetase involved in nonribosomal peptide synthesis. Chem. Rev. 97: 2651-2673 
  13. Kratzschmar, J., M. Krause, and M. A. Marahiel. 1989. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J. Bacteriol. 171: 5422-5429 
  14. Stachelhaus, T., H. D. Mootz, and M. A. Marahiel. 1999. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetase. Chem. Biol. 6: 493-505 
  15. Guenzi, E., G. Galli, I. Grgurina, D. C. Gross, and G. Grandi. 1998. Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J. Biol. Chem. 273: 32857-32863 
  16. Walton, J. D., D. G. Panaccione, and H. E. Hallen. 2004. Peptide synthesis without ribosomes, pp. 127-162. In J. Tkacz and L. Lange (eds.), Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Kluwer Academic Publishers, New York, U.S.A 
  17. Schlumbohm, W., T. Stein, C. Ullrich, J. Vater, M. Krause, M. A. Marahiel, V. Kruft, and B. Wittmann-Liebold. 1991. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J. Biol. Chem. 266: 23135-23141 

이 논문을 인용한 문헌 (1)

  1. 2006. "" Journal of microbiology and biotechnology, 16(9): 1434~1440 


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일