$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The promoter region of a carbon starvation gene isolated from Pseudomonas putida was cloned and analyzed for its potential use for in situ bioremediation and bioprocessing. We constructed a recombinant plasmid pMKD101 by cloning the 0.65 kb promoter region of the gene into the promoter proving vector, pMK301, which contains the lacZ for ${\beta}$-galactosidase activity as a reporter gene. pMKD101 was transformed into the wild-type P. putida MK1, resulting in P. putida RPD101, and analyzed for ${\beta}$-galactosidase activity under different culture conditions. When RPD101 was grown on the minimal medium plus $0.1\%$ glucose as a sole carbon source in batch cultures, ${\beta}$-galactosidase activity was found to be 3.2-fold higher during the stationary phase than during the exponential phase. In chemostat cultures, ${\beta}$-galactosidase activity was found to be 3.1-fold higher at the minimal growth rate (dilution rate=$0.05\;h^{-1}$) than at the maximal growth rate (dilution rate=$0.173;h^{-1}$). The results suggest that a carbon starvation promoter can be utilized to maximize the expression of a desired gene under nutrient limitation.

참고문헌 (17)

  1. Karel, S. F., S. B. Libicki, and C. R. Robertson. 1985. The immobilization of whole cell: Engineering principles. Chem. Eng. Sci. 40: 1321-1354 
  2. Matin, A. 1994. Starvation promoters of Escherichia coli: Their function, regulation, and use in bioprocessing and bioremediation. Ann. N. Y Acad. Sci. 721: 277-291 
  3. Matin, A., C. D. Little, C. D. Fraley, and M. Keyhan. 1995. Use of starvation promoters to limit growth and selectively enrich expression of trichloroethylene- and phenol-transforming activity in recombinant Escherichia coli. Appl. Environ. Microbiol. 61: 3323-3328 
  4. Park, D. W., J. H. Lee, D. H. Lee, K. Lee, and C. K. Kim. 2003. Sequence characteristics of xylJQK genes responsible for catechol degradation in benzoate-catabolizing Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 13: 700-705 
  5. Kim, Y. and A. Matin. 1994. Starvation genes, promoters and starvation survival fusion mutants of Pseudomonas putida, pp. 344-356. In M. Levin, C. Grim, and J. S. Angle (eds.). Proceeding of the Biotechnology Risk Assessment Symposium, College Park, Maryland 
  6. Herrero, M., V. Lorenzo, and K. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567 
  7. Kim, Y., L. S. Watrud, and A. Matin. 1995. A carbon starvation survival gene of Pseudomonas putida is regulated by sigma-54. J. Bacteriol. 177: 1850-1859 
  8. Tunner, J. R., C. R. Robertson, S. Schippa, and A. Matin. 1992. Use of glucose starvation to limit growth and induce protein production in Escherichia coli. Biotech. Bioeng. 40: 271-279 
  9. Ghiorse, W. C. and J. J. Wilson. 1988. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33: 107-172 
  10. Isken, S., A. Derks, P. F. Wolffs, and J. A. de Bont. 1999. Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12. Appl. Environ. Microbiol. 65: 2631-2635 
  11. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y 
  12. Semprini, L., P. V. Roberts, G. D. Hopkins, and P. L. McCarty. 1990. In field evaluation of in-situ biodegradation of chlorinated ethenes. 2. Results of biostimulation and biotransformation experiments. Ground Water 28: 715-727 
  13. Sirinun, A. and P. A. Williams. 1998. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Microbiology 144: 1387-1396 
  14. Hopkins, G. D., L. Semprini, and P. L. McCarty. 1993. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-using microorganisms. Appl. Environ. Microbiol. 59: 2277-2285 
  15. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y 
  16. Henis, Y. 1987. Survival and dormancy of bacteria, pp. 1-108. In Y. Henis (ed.), Survival and Dormancy in microorganism. John Wiley & Sons, New York, U.S.A 
  17. Pandza, S., M. Baetens, C. H. Park, T. Au, M. Keyhan, and A. Matin. 2000. The G-protein F1hF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol. Microbiol. 36: 414-423 

이 논문을 인용한 문헌 (2)

  1. 2007. "" Journal of microbiology and biotechnology, 17(9): 1452~1459 
  2. 2007. "" Journal of microbiology and biotechnology, 17(2): 373~377 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일