$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The ccpA gene encoding catabolite control protein A (CcpA) of Leuconostoc mesenteroides SYl, a strain isolated from kimchi, was cloned, sequenced, analyzed for transcript, and overexpressed in Escherichia coli. The ccpA ORF (open reading frame) is 1,011 bp in size, which can encode a protein of 336 amino acid residues with a molecular mass of 36,739 Da. The transcription start site was mapped at a position 49 nucleotides upstream of the start codon, and promoter sequences were also identified. The putative cre site overlapped with the -35 promoter sequence. The deduced amino acid sequence of the CcpA contained the helix-turn-helix motif found in many DNA-binding regulatory proteins. CcpA from 1. mesenteroides SY1 had $54.6\%$ identity with CcpA from Lactobacillus casei. The Northern blot experiment showed that ccpA was transcribed as a single 1.1 kb transcript, and transcription was repressed when grown on media containing glucose. CcpA was overproduced in E. coli BL21(DE3) cells using the pET expression vector, and purified to an apparent homogeneity. Gel Mobility Shift Assay with purified CcpA and a DNA fragment containing the ere sequence of the $\alpha$-galactosidase gene (aga) from L. mesenteroides SY1 revealed that CcpA bound specifically to the cre site of aga.

참고문헌 (32)

  1. Gill, S. C. and P. H. von Hippel 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319-326 
  2. Grundy, F. J., D. A. Waters, T. Y. Takova, and T. M. Henkin. 1993. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol. 10: 259-271 
  3. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 41: 95-98 
  4. Henkin, T. M., F. J. Grundy, W. L. Nicholson, and G H. Chambliss. 1991. Catabolite repression of a-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol. 5: 575-584 
  5. Nam, S. J., J. Y. Park, J. K. Kim, Y. L. Hae, H. D. Yun, and J. H. Kim. 2004. Cloning of pdh genes encoding subunits of pyruvate dehydrogenase complex from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 14: 197-201 
  6. Reizer, J., C. Hoischen, F. Titgemeyer, C. Rivolta, R. Rabus, J. Stlilke, D. Karamata, M. H. Saier, Jr., and W. Hillen. 1998. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27: 1157-1169 
  7. Ryu, J. Y., H. S. Lee, and H. S. Rhee. 1984. Changes of organic acids and volatile flavor compounds in kimchi fermented with different ingredients. Kor. J. Food Sci. Technol. 16: 169-173 
  8. Egeter, O. and Y. Miwa. 1994. Catabolite repression mediated by the catabolite control protein CcpA protein. J. Bacterial. 176: 511-513 
  9. Koster, E., T. Hilbich, M. K. Dahl, and W. Hillen. 1999. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression. J. Bacterial. 181: 4125-4128 
  10. Galinier, A., J. Haiech, M.-C. Kilhofer, M. Jaquinod, J. Sti.ilke, J. Deutscher, and J. Martin-Verstraete. 1997. The Bacillus subtilis crh gene encodes an HPr-like protein involved in carbon catabolite repression. Proc. Natl. Acad. Sci. USA 94: 8439-8444 
  11. Inacio, J. M., C. Costa, and I. de Sa-Nogueira. 2003. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology 149: 2345-2355 
  12. Kravanja, M., R. Engelmann, V. Dossonnet, M. Bluggel, H. E. Meyer, R. Frank, A. Galinier, J. Deutscher, N. Schnell, and W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: The HPr kinase/phosphatase. Mol. Microbiol. 31: 59-66 
  13. Park, J. Y., S. J. Park, S. J. Nam, Y. L. Ha, and J. H. Kim. 2002. Cloning and characterization of the L-Iactate dehydrogenase gene (ldhL) from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 12: 716-721 
  14. Zhang, J. and T. L Madden. 1997. PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 7: 649-656 
  15. Chyun, J. H. and H. S. Rhee. 1976. Studies on the volatile fatty acids and carbon dioxide produced in different kimchis. Kor. J. Food Sci. Technol. 8: 90-94 
  16. Park, R.-J., K.-H. Lee, S.-J. Kim, J.-Y. Park, S.-J. Nam, H.-D. Yun, H.-J. Lee, H. C. Chang, D. K. Chung, J.-H. Lee, Y H. Park, and J. H. Kim. 2002. Isolation of Lactococcus lactis strain with ${\beta}$-galactosidase activity from kimchi and cloning of lacZ gene from the isolated strain. J. Microbiol. Biotechnol. 12: 157-161 
  17. Han, H. U., C. R. Lim, and H. K. Park. 1990. Determination of microbial community as an indicator ofkimchi fermentation. Kor. J. Food Sci. Technol. 22: 26-32 
  18. Fujita, Y., Y. Miwa, A. Galinier, and J. Deutscher. 1995. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol. Microbial. 17: 953-960 
  19. Monedero, V., M. J. Gosalbes, and G. Perez-Martinez. 1997. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CopA. J. Bacteriol. 179: 6657-6664 
  20. Jeong, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim, and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosaccharide fiuctanotransferase . (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928 
  21. Renna, M. C., N. Najimudin, L. R. Winik, and S. A. Zahler. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175: 3863 - 3875 
  22. Stlilke, J. and W. Hillen. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195-201 
  23. Mahr, K., W. Hillen, and F. Titgemeyer. 2000. Carbon catabolite repression in Lactobacillus pentosus: Analysis of the ccpA region. Appl. Environ. Microbiol. 66: 277-283 
  24. Lee, K. H., G. S. Moon, J. Y. An, H. J. Lee, H. C. Cahng, D. K. Chung, J. H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characteriaztion of its nisZ gene. J. Microbiol. Biotechnol. 12: 389-397 
  25. Gosseringer, R., E. KUster, A. Galinier, J. Deutscher, and W. Hillen. 1997. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J. Mol. Biol. 266: 665-676 
  26. Hueck, C. J. and W. Hillen. 1995. Catabolite repression in Bacillus subilis: A global regulatory mechanism for the gram-positive bacteria. Mol. Microbiol. 15: 395-401 
  27. Shin, B. S., S. K. Choi, and S. H. Park. 1999. Regulation of the Bacillus subtilis phosphotransacetylase gene. J. Biochem. (Tokyo) 126: 333-339 
  28. Faires, N., S. Tobisch, S. Bachem, J. Martin-Verstraete, M. Hecker, and J. Sti.ilke. 1999. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J. Mol. Microbial. Biotechnol. 1: 141-148 
  29. Luesink, E. J., R. E. van Herpen, B. P. Grossiord, O. P. Kuipers, and W. M. de Vos. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789-798 
  30. Muscariello, L., R. Marasco, M. de Felice, and M. Sacco. 2001 The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl. Environ. Microbiol. 67: 2903-2907 
  31. Deutscher, J., E. KUster, U. Bergstedt, V. Charrier, and W. Hillen. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbial. 15: 1049-1053 
  32. Higgins D., J. Thompson, T. Gibson, J. D. Thompson, D. G Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 

이 논문을 인용한 문헌 (8)

  1. 2006. "" Journal of microbiology and biotechnology, 16(10): 1613~1621 
  2. 2006. "" Journal of microbiology and biotechnology, 16(6): 983~987 
  3. 2006. "" Journal of microbiology and biotechnology, 16(6): 988~992 
  4. 2007. "" Journal of microbiology and biotechnology, 17(12): 2081~2084 
  5. 2007. "" Journal of microbiology and biotechnology, 17(11): 1898~1903 
  6. 2007. "" Journal of microbiology and biotechnology, 17(2): 287~296 
  7. 2007. "" Journal of microbiology and biotechnology, 17(5): 822~829 
  8. 2008. "" Journal of microbiology and biotechnology, 18(4): 746~753 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일