$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Characterization of the Catabolite Control Protein (CcpA) Gene from Leuconostoc mesenteroides SY1 원문보기

Journal of microbiology and biotechnology, v.15 no.4, 2005년, pp.749 - 755  

PARK JAE-YONG (Division of Applied Life Science, Graduate School, and Gyeongsang National University) ,  PARK JIN-SIK (Division of Applied Life Science, Graduate School, and Gyeongsang National University) ,  KIM JONG-HWAN (Division of Applied Life Science, Graduate School, and Gyeongsang National University) ,  JEONG SEON-JU (Division of Applied Life Science, Graduate School, and Gyeongsang National University) ,  CHUN JIYEON (Division of Applied Life Science, Graduate School, and Gyeongsang National University) ,  LEE JONG-HOON (Department of Foods and Biotechnology, Kyunggi University) ,  KIM JEONG HWAN (Institute of Agriculture & Life Science, Gyeongsang National University)

Abstract AI-Helper 아이콘AI-Helper

The ccpA gene encoding catabolite control protein A (CcpA) of Leuconostoc mesenteroides SYl, a strain isolated from kimchi, was cloned, sequenced, analyzed for transcript, and overexpressed in Escherichia coli. The ccpA ORF (open reading frame) is 1,011 bp in size, which can encode a protein of 336 ...

주제어

참고문헌 (32)

  1. Chyun, J. H. and H. S. Rhee. 1976. Studies on the volatile fatty acids and carbon dioxide produced in different kimchis. Kor. J. Food Sci. Technol. 8: 90-94 

  2. Deutscher, J., E. KUster, U. Bergstedt, V. Charrier, and W. Hillen. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbial. 15: 1049-1053 

  3. Egeter, O. and Y. Miwa. 1994. Catabolite repression mediated by the catabolite control protein CcpA protein. J. Bacterial. 176: 511-513 

  4. Faires, N., S. Tobisch, S. Bachem, J. Martin-Verstraete, M. Hecker, and J. Sti.ilke. 1999. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J. Mol. Microbial. Biotechnol. 1: 141-148 

  5. Fujita, Y., Y. Miwa, A. Galinier, and J. Deutscher. 1995. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol. Microbial. 17: 953-960 

  6. Galinier, A., J. Haiech, M.-C. Kilhofer, M. Jaquinod, J. Sti.ilke, J. Deutscher, and J. Martin-Verstraete. 1997. The Bacillus subtilis crh gene encodes an HPr-like protein involved in carbon catabolite repression. Proc. Natl. Acad. Sci. USA 94: 8439-8444 

  7. Gill, S. C. and P. H. von Hippel 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182: 319-326 

  8. Gosseringer, R., E. KUster, A. Galinier, J. Deutscher, and W. Hillen. 1997. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J. Mol. Biol. 266: 665-676 

  9. Grundy, F. J., D. A. Waters, T. Y. Takova, and T. M. Henkin. 1993. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol. 10: 259-271 

  10. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 41: 95-98 

  11. Han, H. U., C. R. Lim, and H. K. Park. 1990. Determination of microbial community as an indicator ofkimchi fermentation. Kor. J. Food Sci. Technol. 22: 26-32 

  12. Henkin, T. M., F. J. Grundy, W. L. Nicholson, and G H. Chambliss. 1991. Catabolite repression of a-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol. 5: 575-584 

  13. Higgins D., J. Thompson, T. Gibson, J. D. Thompson, D. G Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 

  14. Hueck, C. J. and W. Hillen. 1995. Catabolite repression in Bacillus subilis: A global regulatory mechanism for the gram-positive bacteria. Mol. Microbiol. 15: 395-401 

  15. Inacio, J. M., C. Costa, and I. de Sa-Nogueira. 2003. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology 149: 2345-2355 

  16. Jeong, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim, and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosaccharide fiuctanotransferase . (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928 

  17. Kravanja, M., R. Engelmann, V. Dossonnet, M. Bluggel, H. E. Meyer, R. Frank, A. Galinier, J. Deutscher, N. Schnell, and W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: The HPr kinase/phosphatase. Mol. Microbiol. 31: 59-66 

  18. Koster, E., T. Hilbich, M. K. Dahl, and W. Hillen. 1999. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression. J. Bacterial. 181: 4125-4128 

  19. Lee, K. H., G. S. Moon, J. Y. An, H. J. Lee, H. C. Cahng, D. K. Chung, J. H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characteriaztion of its nisZ gene. J. Microbiol. Biotechnol. 12: 389-397 

  20. Luesink, E. J., R. E. van Herpen, B. P. Grossiord, O. P. Kuipers, and W. M. de Vos. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789-798 

  21. Mahr, K., W. Hillen, and F. Titgemeyer. 2000. Carbon catabolite repression in Lactobacillus pentosus: Analysis of the ccpA region. Appl. Environ. Microbiol. 66: 277-283 

  22. Monedero, V., M. J. Gosalbes, and G. Perez-Martinez. 1997. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CopA. J. Bacteriol. 179: 6657-6664 

  23. Muscariello, L., R. Marasco, M. de Felice, and M. Sacco. 2001 The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl. Environ. Microbiol. 67: 2903-2907 

  24. Nam, S. J., J. Y. Park, J. K. Kim, Y. L. Hae, H. D. Yun, and J. H. Kim. 2004. Cloning of pdh genes encoding subunits of pyruvate dehydrogenase complex from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 14: 197-201 

  25. Park, J. Y., S. J. Park, S. J. Nam, Y. L. Ha, and J. H. Kim. 2002. Cloning and characterization of the L-Iactate dehydrogenase gene (ldhL) from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 12: 716-721 

  26. Park, R.-J., K.-H. Lee, S.-J. Kim, J.-Y. Park, S.-J. Nam, H.-D. Yun, H.-J. Lee, H. C. Chang, D. K. Chung, J.-H. Lee, Y H. Park, and J. H. Kim. 2002. Isolation of Lactococcus lactis strain with ${\beta}$ -galactosidase activity from kimchi and cloning of lacZ gene from the isolated strain. J. Microbiol. Biotechnol. 12: 157-161 

  27. Reizer, J., C. Hoischen, F. Titgemeyer, C. Rivolta, R. Rabus, J. Stlilke, D. Karamata, M. H. Saier, Jr., and W. Hillen. 1998. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27: 1157-1169 

  28. Renna, M. C., N. Najimudin, L. R. Winik, and S. A. Zahler. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175: 3863 - 3875 

  29. Ryu, J. Y., H. S. Lee, and H. S. Rhee. 1984. Changes of organic acids and volatile flavor compounds in kimchi fermented with different ingredients. Kor. J. Food Sci. Technol. 16: 169-173 

  30. Shin, B. S., S. K. Choi, and S. H. Park. 1999. Regulation of the Bacillus subtilis phosphotransacetylase gene. J. Biochem. (Tokyo) 126: 333-339 

  31. Stlilke, J. and W. Hillen. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195-201 

  32. Zhang, J. and T. L Madden. 1997. PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 7: 649-656 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로