• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


본 연구에서는 pilot 규모의 활성탄 공정을 운전하면서 입상활성탄(granular activated carbon: GAC) 단계에서부터 생물활성탄(biological activated carbon: BAC) 단계로 전환되고 난 후 까지 활성탄 재질별로 유기물 제거능과 미생물 군집특성을 함께 조사하였다. 활성탄 재질별 유기물 흡착능은 석탄계 재질의 활성탄이 가장 우수하였고, bed volume 20,000 이후부터는 3가지 활성탄들이 정성상태에 도달하였다. 부착세균의 생체량과 생산력 또한 석탄계 재질 활성탄에서 가장 높은 것으로 나타났으며, heterotrophic plate count(HPC), eubacteria(EUB), 4,6-diamidino-2-phenylindole(DAPI) 및 생산력은 각각 $0.95{\times}10^7{\sim}52.4{\times}10^7$ CFU/g, $3.8{\times}10^8{\sim}134.2{\times}10^8$ cell/g, $7.0{\times}10^8{\sim}250.2{\times}10^8$ cell/g 및 $1.2{\sim}3.4\;mg{\cdot}C/m^3{\cdot}h$의 범위로 나타났다. 그리고 부착세균의 생체량과 생산력은 모두 bed volume 20,000 이후부터 증가하는 경향을 보였다. 활성탄 재질별 부착세균 생체량과 세균 생산력에 대한 동화가능한 유기탄소(assimilable organic carbon: AOC) 제거율과의 상관성 평가에서는 석탄계 재질 활성탄이 가장 양호한 상관성을 보였으며, 항목별로는 세균 생산력에 대한 상관성이 상대적으로 높은 것으로 나타났다. Fluorescent in situ hybridization(FISH)에 의한 세균군집 구조 조사결과, bed volume 20,000까지는 모든 활성탄에서 $\alpha$ 그룹($\alpha$-proteobacteria)과 other bacteria가 우점하였고, bed volume 20,000 이상에서는 석탄계 재질 환성탄에서는 $\beta$ 그룹($\beta$-proteobacteria)과 $\gamma$ 그룹($\gamma$-proteobacteria)의 우점비율이 상승하였으나, 야자계와 목탄계에서는 $\alpha,\;\beta$$\gamma$ 그룹의 우점비율이 상승하는 것으로 조사되었다.


The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.

참고문헌 (40)

  1. A pilot study of biological GAC filtration in drinking water treatment , Servais, P.;Billen, G.;Bouillot, P.;Benezet, M. , J. Wat. Suppl.: Res. & Technol.-Aqua / v.41,pp.163-168, 1992
  2. 고도정수공정에서의 BOM 제거특성 평가 , 노재순;손희종;박홍기;황영도;류동춘;강임석;주기재 , 대한환경공학회지 / v.25,pp.909-919, 2003
  3. 활성탄 공정에서의 염소 소독부산물 제거특성 , 손희종;노재순;김상구;배석문;강임석 , 대한환경공학회지 / v.27,pp.762-770, 2005
  4. Ozone and biofiltration optimization for multiple objective , Carlson, K.H.;Amy, G.L. , J. AWWA / v.93,pp.88-98, 2001
  5. Ozone in Water Treatment: Application and Engineering , Langlais, B.;Recjhow, D.A.;Brink, D.R. , / v.,pp., 1991
  6. Biofilter pretreatment for the control of microfiltration membrane fouling , Park, J.;Takizawa, S.;Katayama, H.;Ohgaki, S. , Water Sci. Tech., Water Supply / v.2,pp.193-199, 2002
  7. Comparative measurements of microbial activity in drinking water biofilters , Fonseca, A.C.;Summers, R.S.;Hernandez, M.T. , Water Res. / v.35,pp.3817-3824, 2001
  8. Impact of filtration material on nitrification in biological filters used in drinking water production , Kihn, A.;Andersson, A.;Laurent, P.;Servais, P.;Prevost, M. , J. Water Suppl.: Res. & Technol.-Aqua / v.51,pp.35-45, 2002
  9. Treatment of humic surface water at cold temperatures by ozonation and biofiltration , Melin, E.;Eikebrokk, B.;Brugger, M.;Odegaard, H. , Water Sci. Tech.: Water Supply / v.2,pp.451-457, 2002
  10. Impact of temperature on drinking water biofilter performance and microbial community structure , Moll, D.M.;Summers, R.S.;Fonseca, A.C.;Matheis, W. , Environ. Sci. Technol. / v.33,pp.2377-2382, 1999
  11. Artificial grounderwater treatment: biofilm activity and organic carbon removal performance , Langmark, J.;Storey, M.V.;Ashbolt, N.J.;Stenstrom, T.A. , Water Res. / v.38,pp.740-748, 2004
  12. A tentative direct microscopic method for counting living marine bacteria , Kogure, K.;Simidu, U.;Taga, N. , Can. J. Microbiol. / v.25,pp.415-420, 1979
  13. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes , Yu, F.P.;McFeters, G.A. , J. Microbiol. Methods / v.20,pp.1-10, 1994
  14. Identification of uncultured bacteria: a challenging task for molecular taxonomists , Amann, R.;Ludwig, W.;Schleifer, K.H. , ASM News / v.60,pp.360-365, 1994
  15. Phylogenetic and in situ defection of individual microbial cells without cultivation , Amann, R.;Ludwig, W.;Schleifer, K.H. , Microbial. Rev. / v.59,pp.143-169, 1995
  16. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats , Staley, J.T.;Konopka, A. , Annu. Rev. Microbial. / v.39,pp.321-346, 1985
  17. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization , Alfreider, A.;Pernthhaler, J.;Amman, R.;Sattler, B.;Glockner, F.O.;Wille, A.;Psenner, R. , Appl. Environ. Microbial. / v.62,pp.2138-2144, 1996
  18. Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH , Falkentoft, C.M.;Muller, E.;Amz, P.;Harremoes, P.;Mosbak, H.;Wwlderer, P.A.;Wuertz, S. , Water Res. / v.36,pp.491-500, 2002
  19. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports , Bouvier, T.;Giorgio, P.A.D. , FEMS Microbiol. Ecol. / v.44,pp.3-15, 2003
  20. Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge , Wagner, R.;Erhart, R.;Manz, W.;Amann, R.;Lemmer, H.;Wedi, D.;Schleifer, K.H. , Appl. Environ. Microbial. / v.60,pp.792-800, 1994
  21. Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes , Kampfer, P.;Erhart, R.;Beimfohr, C.;Bohringer, J.;Wagner, M. , Mar. Ecol. / v.32,pp.101-121, 1996
  22. Phylogenetic analysis and in situ identification of bacteria in activated sludge , Snaidr, J.;Amann, R.;Huber, I.;Ludwig, W.;Schleifer, K.H. , Appl. Environ. Microbiol. / v.63,pp.2884-2896, 1997
  23. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes , Manz, W.;Szewzyk, D.;Ericsson, P.;Amann, R.;Schleifer, K.H.;Stenstrom, T.A. , Appl. Environ. Microbiol. / v.59,pp.2293-2298, 1993
  24. Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization , Kalmbach, S.;Manz, W.;Szewzyk, U. , FEMS Microbiol. Ecol. / v.22,pp.265-279, 1997
  25. Biofouling of ultra- and nanofiltration membranes for drinking water treatment characterized by fluorescence in situ hybridization (FISH) , Horsch, P.;Gorenflo, A.;Fuder, C.;Deleage, A.;Frimmel, F.H. , Desalination / v.172,pp.41-52, 2005
  26. Determining the concentration of easily assimilable organic carbon in drinking water , Van der Kooij, D.;Visser, A.;Hijnen, W.A.M. , J. AWWA / v.74,pp.540-545, 1982
  27. 粒狀活性炭表層のおける微生物の動向 , 長澤 , 第41回 日本水道硏究發表會 發表論文集 / v.,pp.1-3, 1990
  28. Heterotrophic plate count;Standard Methods for the Examination of Water and Wastewater , APHA, AWWA, WEF;Eaton, A.D.(ed.);Clesceri, L.S.(ed.);Greenberg, A.E.(ed.) , / v.,pp.9-31-9-35, 1995
  29. Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results , Fuhrman, J.A.;Azam, F. , Mar. Biol. / v.66,pp.109-120, 1982
  30. A Manual of Chemical and Biological Methods for Seawater Analysis , Parsons, T.R.;Maita, Y.;Lalli, C.M. , / v.,pp., 1984
  31. Estimating bacterioplankton production by the $[^3H]$thymidine incorporation in a eutrophic Swedish Lake , Bell, R.T.;Ahlgren, G.M.;Ahlgren, I. , Appl. Environ. Microbiol. / v.45,pp.1709-1721, 1983
  32. Bergey's Manual of Systematic Bacteriology , Krieg, N.R.;Holt, J.G. , / v.,pp., 1984
  33. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , Amann, R.;Binder, B.J.;Olson, R.J.;Chisholm, S.W.;Devereux, R.;Stahl, D.A. , Appl. Environ. Microbial. / v.56,pp.1919-1925, 1990
  34. Testing biologically active filters for removing aldehydes formed during ozonation , Krasner, S.W.;Sclimenti, M.J.;Coffey, B.M. , J. AWWA / v.85,pp.62, 1993
  35. Biofiltration performance: part 1, relationship to biomass , Wang, J.Z.;Summers, R.S.;Miltner, R.J. , J. AWWA / v.87,pp.55, 1995
  36. Block Biology of Microorganisms , Madigan, T.M.;Martinko, J.M.;Parker, J. , / v.,pp.453-460, 2000
  37. 소양호에서의 세균군집구조의 계절적.수직적 변화 , 김동주;홍선희;안태석 , 한국미생물학회지 / v.35,pp.242-247, 1999
  38. Phylogentic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions , Manz, W.;Amann, R.;Ludwig, W.;Wangner, M. , Appl. Environ. Microbiol. / v.58,pp.593-600, 1992
  39. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization , Glockner, F.O.;Fuchs, B.M.;Amann, R. , Appl. Environ. Microbiol. / v.65,pp.3721-3726, 1999
  40. Assessment of bacteriological activity in carbon treatment of drinking water , Stewart, M.H.;Wolfe, R.L.;Means, E.G. , Appl. Environ. Microbiol. / v.56,pp.3822, 1990

이 논문을 인용한 문헌 (10)

  1. Seo, In-Suk ; Son, Hee-Jong ; Choi, Young-Ik ; Ahn, Wook-Sung ; Park, Chung-Kil 2007. "Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 29(2): 184~191 
  2. Son, Hee-Jong ; Choi, Keun-Joo ; Kim, Sang-Goo 2007. "Removal Characteristics of Natural Organic Matters in Activated Carbon and Biofiltration Process" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 29(2): 205~213 
  3. Son, Hee-Jong ; Yoo, Soo-Jeon ; Yoo, Pyung-Jong ; Jung, Chul-Woo 2008. "Effects of EBCT and Water Temperature on HAA Removal using BAC Process" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 30(12): 1255~1261 
  4. Bae, Sang-Dae ; Son, Hee-Jong ; Jung, Chul-Woo 2008. "Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 30(2): 218~224 
  5. Son, Dong-Min ; Son, Hee-Jong ; Lee, Hwa-Ja ; Kang, Lim-Seok 2009. "Removal of Geosmin and 2-MIB using Biological Activated Carbon Process" 上下水道學會誌 = Journal of Korean Society of Water and Wastewater, 23(2): 189~198 
  6. Ko, Jae-Hyun ; Son, Hee-Jong ; Kim, Young-Jin ; Bae, Seog-Moon ; Yoo, Pyung-Jong ; Lee, Tae-Ho 2009. "Biodegradation Characteristics of Aldehydes using Biological Activated Carbon Process" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 31(11): 989~996 
  7. Son, Hee-Jong ; Yoo, Soo-Jeon ; Roh, Jae-Soon ; Yoo, Pyong-Jong 2009. "Biological Activated Carbon (BAC) Process in Water Treatment" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 31(4): 308~323 
  8. Son, Hee-Jong ; Jung, Chul-Woo ; Choi, Young-Ik ; Jang, Seong-Ho 2010. "Characteristics of Biodegradation of Geosmin using BAC Attached Bacteria in Batch Bioreactor" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 32(7): 699~705 
  9. Yeom, Hoon-Sik ; Son, Hee-Jong ; Seo, Chang-Dong ; Kim, Sang-Goo ; Ryu, Dong-Choon 2013. "Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process" 대한환경공학회지 = Journal of Korean Society of Environmental Engineers, 35(12): 889~896 
  10. Son, Hyeng-Sik ; Jung, Chul-Woo ; Choi, Young-Ik ; Lee, Gun ; Son, Hee-Jong 2014. "Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process" Journal of environmental science international = 한국환경과학회지, 23(6): 1101~1109 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일