$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

CSTR의 장기운전을 통한 포도당으로부터의 고온 수소생산

Thermophilic Biohydrogen Production from Glucose with a Long-term Operation of CSTR

초록

1. $H_2$ 생산속도와 $H_2$ 수율의 안정화를 근거로 판단컨대 start-up 기간은 30일 이내로 나타나 중온 CSTR에 비해 짧은 편이었다. 2. 고온 CSTR의 최고 $H_2$ 수율은 2.4 mol $H_2/mol$ glucose로 나타나 보고 된 중온의 것에 비해 우수한 편에 속하였다. 3. 운전 초기에 $CH_4$이 발생하였으나 14일 이후부터는 pH를 5.0 이하로 유지하면 거의 검출되지 않는 것으로 봐서 메탄생성균이 식종균에 남아 있더라도 반응기 운전 조건을 통해 $CH_4$ 발생을 억제할 수 있었다. 4. 고온 CSTR은 초기 운전 후에 적용한 운전조건의 변화(유입 포도당 농도, pH, 및 온도)에 민감한 것으로 나타났다. 특히 pH 및 온도변화에 대해 $H_2$ 생산속도와 $H_2$ 수율, 포도당 제거율 면에서 반응기 성능의 감소 및 불안정이 나타나, 운전 조건 변화 후에 나타난 고온 CSTR의 성능회복이 쉽지 않음을 알 수 있었다. 5. 문헌에 보고 된 중온 CSTR과는 달리 고온 CSTR는 일정한 조건에서도 불안정 한 성능을 나타내기도 하였다. 6. 불안정한 반응기 성능은 lactate 농도 증가와 더불어 n-butyrate와 acetate 농도 감소를 동반하였다. 생산된 n-butyrate와 acetate의 농도는 lactate의 농도변화와 반대의 경향을 나타내었다. 7. 비교적 긴 HRT와 침전조를 이용한 biomass의 재순환에도 불구하고, 유입 포도당의 농도가 낮아 biomass 농도는 다른 중온 반응기에서 보고된 것에 비해 낮은 편이었다. 8. T. thermosaccharolyticum와 계통발생학적으로 관련된 개체군이 반응기 운전 후 약 40일부터 우점으로 나타나 반응기 성능과 상관없이 그 이후로 계속 우세한 것으로 나타났다.

Abstract

Thermophilic $H_2$ was produced for 1 year using a bench-scale continuous stirred tank reactor(CSTR). The CSTR was inoculated with anaerobically digested sludge after heat treatment and fed with a glucose-based medium. The reactor showed relatively short start-up period(30 days) and high maximal $H_2$ yield(2.4 mol $H_2/mol$ glucose). Keeping pH 5.0 or less suppressed methanogenic activity. Bacteria affiliated with Thermoanaerobacterium thermosaccharolyticum kept being dominant from approximately 40 days as determined by DGGE. Environmental perturbation(pH or temperature) caused the decrease of biomass concentration in the reactor and the instability of reactor performance, $H_2$ production rate and $H_2$ yield. The unstable performance was accompanied with high concentration of lactate in the effluent. Taken together, the poor recovery of CSTR after perturbations could be partly explained by low biomass concentration and/or metabolic shift of the major population in the CSTR.

저자의 다른 논문

참고문헌 (16)

  1. Das, D. and T. N. VezirogIu (2001), Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13-28 
  2. Angenent, L. T., K. Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa (2004), Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol. 22, 477-485 
  3. Nath, K. and D. Das (2004), Improvement of fermentative hydrogen production: various approaches, Appl. Microbiol. Biotechnol. 65, 520-529 
  4. Zinder, S. H. (1990), Conversion of acetic acid to methane by thermophiles, FEMS Microbiol. Rev. 75, 125-138 
  5. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy (2002), Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy 27, 1339-1347 
  6. van Groenestijn, J. W., J. H. O. Hazewinkel, M. Nienoord, and P. J. T. Bussmann (2002), Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range, Int. J. Hydrogen Energy 27, 1141-1147 
  7. Oh, Y.-K., S.H. Kim, M.-S. Kim, and S. Park (2004), Thermophilic biohydrogen production from glucose with trickling biofilter, Biotechnol. Bioeng. 88, 690-698 
  8. American Public Health Association (1995), Standard methods for examination of water and wastewater. 19th ed. American Public Health Association, Washington DC, VSA 
  9. Ahn, Y, E.-J. Park, Y.K. Oh, S. Park, G. Webster, and A. J. Weightman (2005), Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production, FEMS Microbiol. Lett. 249, 31-38 
  10. Ahn, Y., Y.-K. Oh, and S. Park (2005), Molecular analysis of microorganisms in a thermophilic CSTR used for continuous biohydrogen production, Kor. J. Biotechnol. Bioeng. 20, 428-434 
  11. Lee, C. K. and Z. J. Ordal (1967), Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum, J. Bacteriol. 94, 530-536 
  12. Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi (2001), Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora, J. Biosci. Bioeng. 92, 397-400 
  13. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy (2002), Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy 27, 1339-1347 
  14. Ueno, Y., S. Haruta, M. Ishii, and Y Igarashi (2001), Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost, Appl. Microbiol. Biotechnol. 57, 555-562 
  15. Liu, H., T. Zhang, and H. H. Fang (2003), Thermophilic $H_2$production from a cellulose-containing wastewater, Biotechnol. Lett. 25, 365-369 
  16. Shin, H.-S. and J-.H. Yoon (2005), Conversion of food waste into hydrogen by thermophilic acidogenesis, Biodegradation 16, 33-44 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일