검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일