• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


A computer vision system was designed and validated to recognize an individual Holstein cattle by processing images of their body patterns. This system involves image capture, image pre-processing, algorithm processing, and an artificial neural network recognition algorithm. Optimum management of individuals is one of the most important factors in keeping cattle healthy and productive. In this study, an image-processing system was used to recognize individual Holstein cattle by identifying the body-pattern images captured by a charge-coupled device (CCD). A recognition system was developed and applied to acquire images of 49 cattles. The pixel values of the body images were transformed into input data comprising binary signals for the neural network. Images of the 49 cattle were analyzed to learn input layer elements, and ten cattles were used to verify the output layer elements in the neural network by using an individual recognition program. The system proved to be reliable for the individual recognition of cattles in natural light.

참고문헌 (9)

  1. Hoshiba, H., U. Kazutaka and T. Hidehiko. 1998. Comparison of periodic and continuous milking operations using an automatic milking system. Journal of the Japanese Society of Agricultural Machinery 60(1):107-114. 
  2. Geers, R., B. Puers, V. Goedseels and P. Wouters. 1997. Electronic identification, monitoring and tracking of animals. CAB International, Wallingford. 
  3. Kiyanzad, M. R. 2004. Using linear body measurements of live sheep to predict carcass characteristics for two Iranian fattailed sheep breeds. Asian-Aust. J. Anim. Sci. 17(5):693-699. 
  4. Han, B. S., K. T. Chong, M. H. Choi, Y. J. Kim and B. W. Kang. 1996. Development of electronic identification system of individual dairy cattle for stockbreeding automatization. Kor. J. Vet. Clin. Med. 13(2):171-175. 
  5. Kim, H. T., Y. Ikeda and H. L. Choi. 2005. The identification of Japanese black cattle by their faces. Asian-Aust. J. Anim. Sci. 18(6):868-872. 
  6. Klindtworth, M. 1998. Untersuchung zur automatisierten Identifizierung von Rindern bei der Qualit$\"{a}$tsfleischerzeugung mit Hilfe injizierbarer Transponder. Dissertation, Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI (VDI-MEG) 319. 
  7. Hoshiba, H., K. Umetsu and H. Takahata. 1996. Milking performance of auto-milking systems. Journal of the Japanese Society of Agricultural Machinery 58(1):105-114. 
  8. Lee, D. W., W. Kim and H. T. Kim. 2001. A robotic milking manipulator for teat-cup attachment modules. Journal of the Korean Society for Agricultural Machinery 26(2):163-168. 
  9. Miller, B. K. and M. J. Delwiche. 1989. A color vision system for peach grading. Trans. ASAE 32(4):1484-1490. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일