$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Correlation of Air Pollutants and Thermal Environment Factors in a Confined Pig House in Winter 원문보기

Asian-Australasian journal of animal sciences, v.18 no.4, 2005년, pp.574 - 579  

Choi, Hong L. (School of Agricultural Biotechnology, Seoul National University) ,  Kim, Ki Y. (School of Agricultural Biotechnology, Seoul National University) ,  Kim, Hyunook (Dept. of Environmental Engr. University of Seoul)

Abstract AI-Helper 아이콘AI-Helper

Optimal management of indoor air quality in a confined pig house, especially in winter, is indispensable for preventing infectious respiratory disease to workers and animals. This study was performed to elucidate the correlation of aerial contaminants and climate factors in a confinement. It was obs...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Air sampling time for air pollutants is given in Table 2. Measurements of temperature, relative humidity and odor concentration were made at the same sampling sites three times a day; morning (8:00-9:00 am), afternoon (2:00-3:00 pm), and evening (8:00-9:00 pm). The measurement time bands were carefully determined to avoid disturbances (i.
  • This is mainly because, first, the confined pig house was not cleaned up for the entire experiment period, so the net concentration of indoor air pollutants accumulated with time although ventilation was provided; the ventilation rate was minimal. Second, the ventilation system was operated at the same rate during the sampling periods (i.e., 8:00-9:00 am, 2:00-3:00 pm and 8:00-9:00 pm) in order to eliminate the effect of ventilation rate on the behavior of air pollutant levels in the confined pig house. As a result, the measured concentrations of the air pollutants in this study were higher, especially in the afternoon, than conventional confined pig houses ventilation rates of which are carefully controlled to maintain the optimal indoor temperature.
  • The experiments were performed in a confined pig house, located at the Colligate Livestock Research Station, Seoul National University. The experiments were carried out for 60 days in January and February 2002, and the samples of air pollutants were taken every four days.

대상 데이터

  • Air samples were collected using an air sampler (No. 800519, Gilian) to quantify ammonia, hydrogen sulfide, total dust, and total airborne bacteria. The sampling was performed at three different location of the confinement (i.
  • The confined growing-finishing pig house in this study was 20 m long, 12 m wide and 3 m high. It and has two rows, each of which contains ten pens in both sides from central alley with the concrete solid floor.
  • The experiments were performed in a confined pig house, located at the Colligate Livestock Research Station, Seoul National University. The experiments were carried out for 60 days in January and February 2002, and the samples of air pollutants were taken every four days.
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. Aarnink, A. J. A., P. F. M. M. Roelofs, H. Ellen and H. Gunnink. 1999. Dust sources in animal houses. Proceedings on dust control in animal production facilities. Department of Agricultural Engineering, Danish Institute of Agricultural Sciences, Horsens, Denmark, pp. 34-40. 

  2. Barth, C. L., L. F. Elliot and S. W. Melvin. 1984. Using odor control technology to support animal agriculture. Transactions of the ASAE. 27:859-864. 

  3. Bottcher, R. W. 2001. An environmental nuisance: odor concentrated and transported by dust. Chemical Senses 23:327-331. 

  4. Bruce, J. M. 1981. Ventilation and temperature control criteria for pigs, In: Environmental Aspects of Housing for Animal Production. Butterworths, London, pp. 197-216. 

  5. Bruce, J. M. and M. Sommer. 1987. Environmental aspects of respiratory disease in intensive pig and poultry houses, Including the implications for human health. Proceedings EC Meeting Aberdeen, 29-30 October 1986. EC Commission Publications, Brussels. 

  6. Bundy, D. S. and T. E. Hazen. 1975. Dust levels in pig confinement systems associated with different feeding methods. Transactions of the ASAE. 18(1):137-139, 144. 

  7. Carpenter, G. A., A. W. Cooper and G. E. Wheeler. 1986. The effect of air filtration on air hygiene and pig performance in early-weaner accommodation. Animal production. 43:505-515. 

  8. Chang, C. W., H. Chung, C. F. Huang and H. J. Su. 2001. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style pig houses. Annals of Occupational Hygiene. 45(6):457-465. 

  9. Clark, S., R. Rylander and L. Larsson. 1983. Airborne bacteria, endotoxin and fungi in dust in poultry and pig confinement buildings. American Industrial Hygiene Association Journal 44:537-541. 

  10. Coleman, R. N., J. J. R. Feddes and B. S. West. 1991. What is odour and the potential for its control? In: Proceedings Western Branch Meeting. Canadian Society of Animal Production, Chilliwack (Abstr.). 

  11. Crook, B., J. F. Robertson, G. S. Travers, E. M. Botheroyd, J. Lacey and M. D. Topping. 1991. Airborne dust, ammonia, microorganisms and antigens in pig confinement houses and the respiratory health of exposed farm workers. American Industrial Hygiene Association Journal 52:271-279. 

  12. Curtis, S. E., J. G. Drummond, K. W. Kelley, D. J. Grunloh, V. J. Meares, H. W. Norton and A. H. Jensen. 1975. Diurnal and annual fluctuations of aerial bacterial and dust levels in confined pig houses. J. Anim. Sci. 41(5):1502-1511. 

  13. Donham, K., L. J. Scallon and W. Popendorf. 1986. Characterization of dusts collected from pig confinement buildings. American Industrial Hygiene Association Journal 47:404-410. 

  14. Elliot, L. F., T. M. McCalla and J. A. Deshazer. 1976. Bacteria in the air of housed pig units. Applied and Environmental Microbiology 32(2):270-273. 

  15. Gustafsson, G. 1994. Efficiency of different dust reducing methods in pig houses. Proceedings of the 12th CIGR-Conference, 5-8 September, 1994. Milano, CIGR, Merelbeke, Belgium, pp. 551-558. 

  16. Hartung, J. 1986. Dust in livestock buildings as a carrier of odours. In: (Ed. V. C. Nielsen, J. H. Voorburg and P. L'Hermite), Odour Prevention and control of organic sludge and livestock farmings. Elsevier, London, pp. 321-332. 

  17. Henschler, D. 1990. Maximale Arbeitsplatzkonzentrationen und biologische Arbeitsstoffoleranzwerte. Mitteilung der Senatskommission zur Prufung Gesundheitsschadlicher Arbeitsstoffe; 26. VCH Verlagsgesellschaft, Weinheim, Germany. 

  18. Hinz, T. and K. H. Krause. 1988. Emission of respiratory biological-mixed-aerosols from animal houses, In: Environmental aspects of respiratory disease in intensive pig and poultry houses, including the implications for human health, pp. 81-89. Proceedings: EEC-Meeting Aberdeen, 29-30 October, 1986. 

  19. Hsia L. C. and G. H. Lu. 2004. The effect of high environmental temperature and nutrient density on pig performance, confromation and carcass characteristics under unrsticted feeding system. Asian-Aust. J. Anim. Sci. 17(2):250-258 

  20. Hsia L. C.2004. Effect of food deprivation length of pair house pigs on the running speed and feeding activity in solidatary and social conditions. Asian-Aust. J. Anim. Sci. 17(2):271-277 

  21. Janni, K. A., P. T. Redig, J. Newman and J. Mulhausen. 1984. Respirable aerosol concentrations in turkey grower buildings. ASAE paper No. 84-4522, St. Joseph, MI. 

  22. Kim, K., H. L. Choi, H. Ko and C. N. Kim. 2004. Comparison of Analysis Methods of Ammonia from Pig Production Facilities. Asian-Aust. J. Anim. Sci. 17(11):1608-1614 

  23. Marielena M. L. and L. C. Hsia.2004. Effect of season, hosing and physiological stage on drinking and other related behavior of dairy cows (Bos taurus) Asian-Aust. J. Anim. Sci. 17(10):1417-1429 

  24. MWPS. 1988. Pig housing and equipment handbook, MWPS-8. Midwest Plan Service. Iowa State University, Ames, IA 50011. 

  25. National Institute for Occupational Safety and Health. 1994. NIOSH Manual of Analytical Method. Cincinnati, Ohio, 4th Ed. 

  26. Noblet, J., H. Fortune, S. Dubois and V. Henry. 1989. Nouvelles bases d'estimation des teneur en energie digestible metabolisable et nette des aliments pourle porc. INRA, Paris, pp. 1-106. 

  27. Nordstrom, G. A. and J. B. McQuitty. 1976. Manure Gases in the Animal Environment. Department of Agricultural and Engineering, University of Alberta. 

  28. Olson, D. K. and S. M. Bark. 1996. Health hazards affecting the animal confinement farm worker. Am. Assoc. Occup. Health Nurse J. 44:198-204. 

  29. Pedersen, S. 1993. Time-based variation in airborne dust in respect to animal activity. Proceedings on Livestock Environment. pp. 718-726. ASAE, St. Joseph, MI. 

  30. Robertson, A. M. and H. Galbraith. 1971. Effect of Ventilation on the Gas Concentration in a Part-stalled Piggery. R and D Studies 1, Scottish Farm Buildings Investigation Unit, pp. 17-28. 

  31. SAS. 1996. User's Guide: Statistics, Version 6.0 ed., SAS Inst., Inc.,Cary, NC. USA. 

  32. Seedorf, J., J. Hartung, M. Schroder, K. H. Linkert, V. R. Phillips, M. R. Holden, S. W. Sneath, J. L. Short, R. P. White, S. Pederson, H. Takai, J. O. Johnsen, J. H. M. Metz, P. W. G. Koerkamp, G. H. Uenk and C. M. Wathes. 1998. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Norther Europe. J. Agric. Engin. Res. 70:97-109. 

  33. Shurson, J., M. Whitney and R. Nicolai. 1997. Nutritional manipulation of pig diets to reduce hydrogen sulfide emissions. Extension service, Univ. of Minnesota. 

  34. Stombaugh, D. P., H. S. Teague and W. L. Roler. 1969. Effect of atmospheric ammonia in the pig. J. Anim. Sci. 28:844-847. 

  35. Straubel, H. 1981. Elektro-optische Messung von Aerosolen. Technisches Messen. 48:199-210. 

  36. Takai, H., S. Pederson, J. O. Johnsen, J. H. M. Metz, P. W. G. Koerkamp, G. H. Uenk, V. R. Phillips, M. R. Holden, R. W. Sneath, J. L. Short, R. P. White, J. Hartung, J. Seedorf, M. Schroder, K. H. Linkert and C. M. Wathes. 1998. Concentrations and emissions of airborne dust in livestock buildings in Norther Europe. J. Agric. Enginee. Res. 70:59-77. 

  37. Thorne, P. S., M. S. Niekhaefer, P. Whitten and K. J. Donham. 1992. Comparison of bioaerosol sampling methods in barns housing pig. Appl. Environ. Microbiol. Aug, pp. 2543-2551. 

  38. van't Klooster, C. E., P. F. M. M. Foelofs and P. A. M. Gijsen. 1993. Positioning air inlet and air outlet to reduce dust exposure in pig buildings. Proceedings on Livestock Environment Ⅳ, pp. 754-761. ASAE, St. Joseph, MI. 

  39. Verstegen, M. W. A., W. Van Der Hel, A. A. Jongebreur and G. Enneman. 1976. The influence of ammonia and humidity on activity and energy balance data in groups of pigs. Zeitschrift fur Tierphysiologie, Tierernahrung and Futtermittelkunde. 37:225-263. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로