• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Metagenome, the Untapped Microbial Genome, toward Discovery of Novel Microbial Resources and Application into the Plant Pathology

The plant pathology journal v.21 no.2 , 2005년, pp.93 - 98  

Molecular ecological studies of microbial communities revealed that only tiny fraction of total microorganisms in nature have been identified and characterized, because the majority of them have not been cultivated. A concept, metagenome, represents the total microbial genome in natural ecosystem consisting of genomes from both culturable microorganisms and viable but non-culturable bacteria. The construction and screening of metagenomic libraries in culturable bacteria constitute a valuable resource for obtaining novel microbial genes and products. Several novel enzymes and antibiotics have been identified from the metagenomic approaches in many different microbial communities. Phenotypic analysis of the introduced unknown genes in culturable bacteria could be an important way for functional genomics of unculturable bacteria. However, estimation of the number of clones required to uncover the microbial diversity from various environments has been almost impossible due to the enormous microbial diversity and various microbial population structure. Massive construction of metagenomic libraries and development of high throughput screening technology should be necessary to obtain valuable microbial resources. This paper presents the recent progress in metagenomic studies including our results and potential of metagenomics in plant pathology and agriculture.

저자의 다른 논문

참고문헌 (40)

  1. Beja, O., Suzuki, M. T., Koonin, E. V., Aravind, L., Hadd, A., Nguyen, L. P., Villacorta, R., Amjadi, M., Garrigues, C., Javanovich, S. B., Feldman, R. A. and Delong, E. F. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2:516-529 
  2. Borneman, J., Skroch, P. W., O'Sullivan, K. M., Palus, J. A., Rumjanek, N. G, Jansen, J. L., Nienhuis, J. and Triplett, E. W. 1996. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62:1935-1943 
  3. da Graca, J. V. 1991. Citrus greening disease. Annu. Rev. Phytopathol. 29: 109-136 
  4. Handelsman, J., Rondon, M. R., Brady, S. P., Clady, J. and Goodman, R. M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5:R245-249 
  5. Hugenholtz, P. and Pace, N. R. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14: 190-197 
  6. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. and Sait, M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68:2391-2396 
  7. Woese, C. R., Kandler, O. and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576-4579 
  8. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C, Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J. and Goodman, R. M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:2541-2547 
  9. Schloss, P. D. and Handelsman. J. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14:303-310 
  10. Weller, D. M., Raaijmakers, J. M., McSpadden Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309-348 
  11. Rondon, M. R., Goodman, R. M. and Handelsman, J. 1999a. The earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17:403-409 
  12. Liesack, W. and Stackebrandt, E. 1992. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174:5072-5078 
  13. Torsvik, V., Daae, F. L., Sandaa, R-A. and Ovreas, L. 1998. Novel techniques for analyzing microbial diversity in natural and perturbed environments. J. Biotechnol. 64:53-62 
  14. Pettit, R. K. 2004. Soil DNA libraries for anticancer drug discovery. Cancer Chemother. Pharmacol. 54: 1 -6 
  15. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685 
  16. Quaiser, A., Ochsenreiter, T., Klenk, H-P., Kletzin, A., Treusch, A. H., Meurer, G, Eck, J., Sensen, C. W. and Schleper, G. 2002. First insight into the genome of an uncultivated crenarchaeote from soil. Environ. Microbiol. 4:603-611 
  17. Whitman, W. B., Coleman, D. C. and Wiebe, W. J. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578-6583 
  18. Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G P. and Goodman, R. M. 1997. Molecular phylogeny of archaea from soil. Proc. Natl. Acad. Sci. USA 94:277-282 
  19. Piel. J. 2002. A polyketide synthase-peptide synthase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99: 14002-14007 
  20. Liles, M. R., Manske, B. E, Bintrim, S. B., Handelsman, J. and Goodman, R. M. 2003 A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69:2684-2691 
  21. Jaeger, K-E. and Eggert, T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13:390-397 
  22. Zhou, J., Bruns, M. A. and Tiedje, J. M. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62:316-322 
  23. Amann, R. I., Ludwig, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169 
  24. Kim, U-J., Shizuya, H., De Jong, P. J., Birren, B. and Simon, M. I. 1992. Stable propagation of cosmid-sized human DNA inserts in an F factor based vector. Nucleic Acids Res. 20: 1083-1085 
  25. Joseph, S. J., Hugenholtz, P., Sangwan, P, Osborne, C. A. and Janssen. P. H. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210-7215 
  26. Torsvik, V., Goksoyr, J. and Daae, F. L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782-787 
  27. Wang, G-Y-S., Graziani, E., Waters, B., Pan, W., Li, X., McDermott, J., Meurer, G, Saxena, G, Anderson, R. J. and Davies, J. 2000. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2:2401-2404 
  28. Campbell, M. A., Fitzgerald, H. A. and Ronald, P. C. 2002. Engineering pathogen resistance in crop plants. Transgenic Res. 11: 599-613 
  29. Berry, A. E., Chiocchini, C., Selby, T., Sosio, M. and Wellington, E. M. H. 2003. Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol. Lett. 223: 15-20 
  30. Rondon, M. R., Raffel, S. J., Goodman, R. M. and Handelsman, J. 1999b. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc. Natl. Acad. Sci. USA 96:6451-6455 
  31. Gabor, E. M., de Vries, E. J. and Janssen, D. B. 2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol. Ecol. 44: 153-163 
  32. Lee, S-W, Won, K., Lim, H. K., Kim, J.-C., Choi, G. J. and Cho, K. Y. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726 
  33. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734-740 
  34. Lorenz, P and Schleper, C. 2002. Metagenome - a challenging source of enzyme discovery. J. Mol. Catal. B-Enzym. 1920: 13-19 
  35. Dunwell, J. M. 2005. Transgenic crops: the current and next generations. Methods Mol. Biol. 286:377-398 
  36. Torsvik, V., Ovreas, L. and Thingstad, T. F. 2002a. Prokaryotic diversity -magnitude, dynamics, and controlling factors. Science 296: 1064-1066 
  37. Torsvik, V. and Ovreas, L. 2002b. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240-245 
  38. Corran, A. J., Renwick, A. and Dunbar, S. J. 1998. Approaches to in-vitro lead generation for fungicide invention. Pestic. Sci. 54:338-344 
  39. Lorenz, P., Liebeton, K., Niehaus, E. and Eck, J. 2002. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr. Opin. Biotechnol. 13:572-577 
  40. Woese, C. R. and Fox, G E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:5088-5090 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일