$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

참고문헌 (36)

  1. Coppinger, P., Repetti, P. P., Day, B., Dahlbeck, D., Mehlert, A. and Staskwicz, B. J. 2004. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial resistance in Arabidopsis thaliana. Plant J. 40:225-237 
  2. Hoekema, A., Hirsch, P. R., Hooykaas, P. J.J. and Schilperoort, Z. A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180 
  3. Kiyosawa, S. 1982. Genetic and epidemiological modeling of breakdown of plant disease resistence. Annu. Rev. Phytopathol. 20:93-117 
  4. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16:223-233 
  5. Mindrinos, M., Katagiri, F., Yu, G. L. and Ausubel, F. M. 1994. The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089-1099 
  6. Ritter, C. and Dangl, J. L. 1995. The avrRPm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabodopsis. Mol. Plant Microbe Interact. 8:444-453 
  7. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358 
  8. Sonnhammer, E. L. L., von Heijne, G and Krogh, A 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, eds (Menlo Park, CA: American Association for Artificial Intelligence Press), pp. 175-182 
  9. Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527-1540 
  10. Puri, N., Jenner, C., Bennett, M., Stewart, R., Mansfield, J., Lyons, N. and Taylor, J. 1997. Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol. Plant Microbe Interact. 10:247-256 
  11. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49-59 
  12. Jwa, N. S., Agrawal, G K., Rakwal, R., Park, C. H. and Agrawal, V. P. 2001. Molecular cloning and characterization of novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem. Biophys. Res. Commun. 286:973-983 
  13. Kyte.J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132 
  14. Agrawal, G. K., Rakwal, R. and Iwahashi, H. 2002b. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAPkinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Commun. 294: 1009-1016 
  15. Century, K. S., Shapiro, A. D., Repetti, P. P., Dahlbeck, D., Holub, E. and Staskawicz, B. J. 1997. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965 
  16. Simonich, M. T. and Innes, R. W. 1995. A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. Phaseolicola. Mol. Plant Microbe Interact. 8:637-640 
  17. Warren, R. F., Henk, A., Mowery, P., Holub, E. and Innes, R. W. 1998. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439-1452 
  18. Metraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W. and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006 
  19. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206 
  20. Malamy. J. E. and Benfey, P. N. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33-44 
  21. Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315 
  22. Friedrich, L., Kawton, K., Ruess, W., Masner, P., Specker, N., Rella, G. M., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistence in tobacco. Plant J. 10:61-70 
  23. Dilbirligi, M., Erayrnan, M., Sandhu, D., Sidhu, D. and Gill, K. S. 2004. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461-481 
  24. Hemerly, A. S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and lnze, D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711-1723 
  25. Delaney, T, Friedrich, L., Kessmann, H., Uknes, S., Vemooij, B., Ward, E., Weymann, K. and Ryals, J. 1994. The molecular biology of systemic acquired resistance. In Advances in Molecular Genetics of Plant-Microbe Interactions, volume 3 (Daniels, M.ed.). Dordrecht: Ktuwer Academic Publishers, pp.339-347 
  26. Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2002a. Effects of signaling molecules, protein phosphatase inhibitors, and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipids hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227-236 
  27. Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B. J. 1994. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860 
  28. Dubrovsky, J. G., Doerner, P., Colen-Carmona, A. and Rost, T. L. 2000. Pericycle cell proliferation and lateral root initiation in Arabidopsis thaliana. Plant Physiol. 124: 1648-1657 
  29. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-82 
  30. Innes, R. W., Bent, A. F., Kunkel, B. N., Bisgrove, S. R. and Staskawicz, B. J. 1993. Molecular analysis of avirulence gene avrRpt2 and indentification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859-4869 
  31. Agrawal, G K., Rakwal, R., Jwa, N. S. and Agrawal, V. P. 2001. Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defense/stress response. Plant Physiol. Biochem. 39:1095-1103 
  32. Clough, S. J. and Bent, A. F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743 
  33. Grant, M. R., Godiard, L., Straube, E., Ashfield, T, Lewald, J., Sattler, A., Innes, R. W. and Dangle, J. L. 1995. Structure of the Arabidopsos RPM1 gene enabling dual specificity disease resistance. Science 269:843-846 
  34. Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567-580 
  35. Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854-860 
  36. Bilang, R. and Bogorad, L. 1996. Light-dependent developmental control of rbcS gene expression in epidermal cells of maize leaves. Plant Mol. Biol. 31 :831-841 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일