$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Polyethylene glycol (PEG) 6000-based solid dispersions (SDs), by incorporating various pharmaceutical excipients or microemulsion systems, were prepared using a fusion method, t o compare the dissolution rates and bioavailabilities in rats. The amorphous structure of the drug in SDs was also characterized by powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The ketoconazole (KT), as an antifungal agent, was selected as a model drug. The dissolution rate of KT increased when solubilizing excipients were incorporated into the PEG-based SDs. When hydrophilic and lipophilic excipients were combined and incorporated into PEG-based SDs, a remarkable enhancement of the dissolution rate was observed. The PEG-based SDs, incorporating a self microemulsifying drug delivery system (SMEDDS) or microemulsion (ME), were also useful at improving the dissolution rate by forming a microemulsion or dispersible particles within the aqueous medium. However, due to the limited solubilization capacity, these PEG-based SDs showed dissolution rates, below 50% in this study, under sink conditions. The PEG-based SD, with no pharmaceutical excipients incorporated, increased the maximum plasma concentration (C$_{max}$) and area under the plasma concentration curve (AUC$_{0-6h}$) two-fold compared to the drug only. The bioavailability was more pronounced in the cases of solubilizing and microemulsifying PEG-based SDs. The thermograms of the PEG-based SDs showed the characteristic peak of the carrier matrix around 60$^{\circ}C$, without a drug peak, indicating that the drug had changed into an amorphous structure. The diffraction pattern of the pure drug showed the drug to be highly crystalline in nature, as indicated by numerous distinctive peaks. The lack of the numerous distinctive peaks of the drug in the PEG-based SDs demonstrated that a high concentration of the drug molecules was dissolved in the solid-state carrier matrix of the amorphous structure. The utilization of oils, fatty acid and surfactant, or their mixtures, in PEG-based SD could be a useful tool to enhance the dissolution and bioavailability of poorly water-soluble drugs by forming solubilizing and microemulsifying systems when exposed to gastrointestinal fluid.

저자의 다른 논문

참고문헌 (20)

  1. Caliph, S., Charman, W. N., and Porter, C. J. H., Effect of short-medium- and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymphcannulated and non-cannulated rats. J. Pharm. Sci., 89, 1073-1084 (2000) 
  2. Constantinides, P. P., Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res., 12, 1561-1572 (1995) 
  3. Cornaire, G., Woodley, J., Hermann, P., Cloarec, A., Arellano, C., and Houin, G., Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm., 278, 119-131 (2004) 
  4. Porter, C. J. H. and Charman, W. N., Intestinal lymphatic drug transport: an update. Adv. Drug Del. Rev., 50, 61-80 (2001) 
  5. Sheen, P. C., Khetarpal, V. K., Cariola, C. M., and Rowlings, C. E., Formulation studies of a poorly water-soluble drug in solid dispersions to improve bioavailability. Int. J. Pharm., 118, 221-227 (1995) 
  6. Verheyen, S., Blaton, N., Kinget, R., and Mooter, G. V., Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions. Int. J. Pharm., 249, 45-58 (2002) 
  7. Wang, S.-W., Monagle, J., McNulty, C., Putnam, D., and Chen, H., Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J. Pharm. Sci., 93, 2755-2767 (2004) 
  8. Attama, A. A., Nzekwe, I. T., Nnamani, P. O., Adikwu, M. Y., and Onugu, C. O., The use of solid self-emulsifying systems in the delivery of diclofenac. Int. J. Pharm., 262, 23-28 (2003) 
  9. Kim, T.-W., Choi, C.-Y., Cao, Q.-R., Kwon, K. A., and Lee, B.-J., Dissolution profiles of solid dispersions containing poorly water-soluble drugs and solubilizing compositions. J. Kor. Pharm. Sci., 32, 191-197 (2002) 
  10. Morris, K. R., Knipp, G. T., and Serajuddin, A. T. M., Structural properties of polyethylene glycol-polysorbate 80 mixture, a solid dispersion vehicle. J. Pharm. Sci., 81, 1185-1188 (1992) 
  11. Serajuddin, A. T. M., Solid dispersion of poorly water-soluble drugs: Early promises, subsquent problems, and recent breakthroughs. J. Pharm. Sci., 88, 1058-1066 (1999) 
  12. Mura, P., manderioli, A., Bramanti, G., and Ceccareli, L., Properties of solid dispersions of naproxen in various polyethylene glycols. Drug Dev. Ind. Pharm., 22, 909-916 (1996) 
  13. Alden, M., Tegenfeldt, J., and Saers, E. S., Structures formed by interactions in solid dispersions of the system polyethylene glycol-griseofulvin with charged and noncharged surfactants added. Int. J. Pharm., 94, 31-38 (1993) 
  14. Betageri, G. V. and Makarla, K. R., Characterization of glyburide-polyethylene glycol solid dispersions. Drug Dev. Ind. Pharm., 22, 731-734 (1996) 
  15. Baxter, J. G., Brass, C., Schentag, J. J., and Slaughter, F. L., Pharmacokinetics of ketoconazole administered intravenously to dogs and orally as ablet and solution to humans and dogs. Pharm. Res., 75, 443-447 (1986) 
  16. Franco, M., Trapani, G., Latrofa, A., Tullio, C., Provenzano, M. R., Serra, M., Muggironi, M., Biggio, G., and Liso, G., Dissolution properties and anticonvulsant activity of phenytoinpolyethylene glycol 6000 and polyvinylpyrrolidone K-30 solid dispersions. Int. J. Pharm., 225, 63-73 (2001) 
  17. Cao, Q.-R., Kim, T.-W., Choi, C.-Y., Kwon, K .A., and Lee, B.-J., Preparation and dissolution of PVP-based solid dispersion capsules containing solubilizers. J. Kor. Pharm. Sci., 33, 7-14 (2003) 
  18. Chiou, W. L. and Riegelman, S., Pharmaceutical applications of solid dispersion system. J. Pharm. Sci., 60, 1281-1302 (1971) 
  19. Joshi, H. N., Tejwani, R. W., Davidovich, M., Sahasrabudhe, V. P., Jemal, M., Bathala, M. S., Varia, S. A., and Serajuddin, T. M., Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int. J. Pharm., 269, 251-258 (2004) 
  20. Owusu-Ababio, G., Ebube, N. K., Reams, R., and Habib, M., Comparative dissolution studies for mefenamic acidpolyethylene glycol solid dispersion systems and tablets. Pharm. Dev. Technol., 3, 405-412 (1998) 

이 논문을 인용한 문헌 (5)

  1. 2010. "" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea, 33(6): 901~910 
  2. 2011. "" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea, 34(1): 51~57 
  3. 2011. "" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea, 34(5): 747~755 
  4. 2011. "" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea, 34(5): 757~765 
  5. 2011. "" Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea, 34(11): 1909~1917 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일