• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

New nirS-Harboring Denitrifying Bacteria Isolated from Activated Sludge and Their Denitrifying Functions in Various Cultures


By using PCR with nirS gene primers, three nirSharboring denitrifying bacteria (strain N6, strain N23, and strain R13) were newly isolated from activated sludge of a weak municipal wastewater treatment plant. Small-subunit rRNA gene-based analysis indicated that strain N6, strain N23, and strain R13 were closely related to Arthrobacter sp.,Staphylococcus sp., and Bacillus sp., respectively. In an attempt to identify their roles in biological nitrate and nitrite removal from sewage, we investigated their specific denitrification rates (SDNRs) for $NO_-^3$ - and $NO_-^2$ - in various cultures. All purecultures of each isolated nirS-harboring bacterial strain could remove $NO_-^3$ - and $NO_-^2$ - simultaneously in high efficiency, and the carbon requirements for $NO_-^3$ - removal of strain N6 and strain R13 were effectively low at 3.1 and 4.1 g COD/g $NO_3N$, respectively. In the case of mix-cultures of the strains (N6+N23, N6+R13, N23+R13, and N6+N23+R13), their SDNRs for $NO_-^3$ - were also effective, and their carbon requirements for $NO_-^3$ - removal were also effective at 3.0- 3.8 g COD/g NO3N. However, all tested mix-cultures accumulated $NO_-^2$ - in their culture media. On the other hand, the continuous culture of activated sludge mixed with strain N6 showed no significant increase of $NO_-^3$ - removal in comparison with strain N6's pure culture. These results suggest that nitrate and nitrite removal in biological wastewater treatment might be dependent on complicated bacterial interactions, including several effective denitrifying bacteria isolated in this study, rather than the specific bacterial types present and the number of bacterial types in activated sludge.

참고문헌 (29)

  1. Ahn, I. S., M. W. Kim, H. J. La, K. M. Choi, and J. C. Kwon. 2003. Bacterial community composition of activated sludge relative to type end efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15- 21 
  2. EPA. 1993. Manual Nitrogen Control. Environment Protection Agency, U.S.A 
  3. Krishnamachari, S. and W. W. Clarkson. 1993. Nitrite accumulation in the effluents from high-strength denitrification of industrial wastewater, pp. 383-392. 47th Purdue Industrial Waste Conference Proceedings. Lewis Publishers, Inc., Chelsea, MI, U.S.A 
  4. Lee, J. W, E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus and prediction of microbial community composition with its function in an anaerobic-anoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994- 1001 
  5. Maidak, B. L., J. R. Cole, C. T. Parker, G. M. Garrity, N. Larsen, B. Li, T. G. Lilburn, M. J. McCaughey, G. J. Olsen, R. Overbeek, S. Pramanik, T. M. Schmidt, J. M. Tiedje, and C. R. Woese. 1999. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 27: 171- 173 
  6. Almeida, J. S, M. A. M. Reis, and M. J. T. Carrondo. 1995. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 476- 484 
  7. Braker, G., A. Fesefeldt, and K. P. Witzel. 1998. Development of PCR primer systems for amplification of nitrite reductase gene (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769-3775 
  8. Fossing, H., V. A. Gallardo, B. B. Jorgensen, M. Muttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Foster, R. N. Glud, J. K Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa. 1996. Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 374: 713-715 
  9. Etchebehere, C., I. Errazquin, E. Brrandeguy, P. Dabert, R. Moletta, and L. Muxi. 2001. Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol. Ecol. 35: 259-265 
  10. Ng, W. J., S. L. Ong, and J. Y. Hu. 2001. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech. 43: 139-146 
  11. Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662- 1669 
  12. Braker, G., J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje. 2000. Nitrite reductase gene (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl. Environ. Microbiol. 66: 2096-2104 
  13. Choi, E. S., Z. Yun, J. W. Lee, and S. O. Chun. 1999. The denitrification of weak sewage at various temperatures, pp. 23- 28. 7th IAWQ Asia-Pacific Regional Conference Proceedings 
  14. APHA, AWWA, WPCF. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Work Association/Water Pollution Control Federation. Washington DC, U.S.A. 
  15. Park, E. J., J. K. Seo, J. K. Kim, K. H. Suh, and S. K. Kim. 2000. Denitrification characteristics and microorganism composition of acclimated denitrifier consortium. J. Microbiol. Biotechnol. 10: 410-414 
  16. Geoffrey, B. and J. M. Tiedje. 1992. Isolation and characterization of a nitrite-reduction gene and its use as a probe for de nitrifying bacteria. Appl. Environ. Microbiol. 58: 374- 384 
  17. Both, H., G. Jost, M. Schloter, B. B. Ward, and K. P. Witzel. 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673- 690 
  18. Wilderer, P. A., W. L. Jones, and U. Dau. 1987. Competition in denitrification system affecting reduction rate and accumulation of nitrite. Wat. Res. 21: 239- 245 
  19. Koshland, D. E. 1992. The molecule of the year. Science 258: 1861 
  20. Pinar, G., J. M. Oliva, L. Sanchez-Barbero, V. Calvo, and J. L. Ramos. 1998. Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerant Klebsiella oxytoca CECT 4460 and Arthrobacter globiformis CECT 4500. Biotechnol. Bioeng. 58: 510- 514 
  21. Zumft, W. G. 1992. The denitrifying prokaryotes, pp. 554-582. In A. Balows, H. G. Tniper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), The Prokaryotes, 2nd edition. Springer- Verlag, Berlin 
  22. Brosius, J., J. L. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805 
  23. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411 
  24. Park, J. B., H. W. Lee, S. Y. Lee, J. O. Lee, I. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929- 935 
  25. Hallin, S. and P. Lindgreen. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65: 1652- 1657 
  26. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70 
  27. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616 
  28. Hutchins, S. R. 1991. Biodegradation of monoaromatic hydrocarbons by aquifer microorganism using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403- 2407 
  29. Kim, J. K, S. K. Kim, and S. H. Kim. 2001. Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11: 756- 762 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일