$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Comparative Studies on Growth and Phosphatase Activity of Endolithic Cyanobacterial Isolates of Chroococcidiopsis from Hot and Cold Deserts

Abstract

The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.

참고문헌 (31)

  1. Avrarnescu, A., R. Rouillon, and R. Carpentier. 1999. Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly vinyl alcohol: Application to the detection of pollutants. Biotechnology Techniques 13(8): 559- 562 
  2. Banerjee, M., B. A. Whitton, and D. D. Wynn-Williams. 2000. Phosphatase activities of endolithic communities in rocks of Antarctic dry valleys. Microb. Ecol. 39: 80- 91 
  3. Eisenreich, S. J., R. T. Bannerman, and D. E. Amstrong. 1975. A simplified phosphorus analysis technique. Environ. Lett. 9: 43- 53 
  4. Mahasneh. I. A, S. L. J. Grainger, and B. A Whitton. 1990. Influence of salinity on hair formation and phosphatase activity of the blue green alga (Cyanobacterium) Calothrix viguieri D253. Br. Phycol. J. 25: 25- 32 
  5. Marker, A. F. H. 1995. Chlorophyll Analysis, Standard Methods. National Rivers Authority, Bristol, U.K. 
  6. McKay, C. P., E. I. Friedmann, B. Gomez-Silva, L. Caceres-Villanueva, D. T. Anderson, and R. Landheim. 2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: Four years of observations including the EL Nino of 1997- 1998. Astrobiology 3(2): 393-406 
  7. Nienow, J. A and E. I. Friedmann. 1993. Terrestriallithophytic (rock) communities, pp. 353-412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, U.S.A. 
  8. Singh, S. P., S. K. Verma, R. K. Singh, and P. K. Pandey. 1989. Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol. Lett. 60: 193- 196 
  9. Whitton, B. A., S. L. J. Grainger, G. R. W. Hawley, and J. W. Simon. 1991. Cell bound and extracellular phosphatase activities of cyanobacterial isolates. Microb. Ecol. 21: 85-98 
  10. Wilkinson, S. C., K. H. Goulding, and P. K. Robinson. 1990. Mercury removal by immobilized algae in batch culture systems. J. Appl. Phycol. 2: 223- 230 
  11. Williams, D. D. 2000. Cyanobacteria in desert-life at limits, pp. 341- 366. In Whitton, B. A and M. Potts M (eds.), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer, Dordrecht 
  12. Chu, S. P. 1942. The influence of mineral composition of the medium on the growth of planktonic algae. I. Methods and culture media. J. Ecol. 30: 284- 325 
  13. Kratz, W. A and J. Myers. 1955. Nutrition and growth of several blue green algae. Am. J. Bot. 42: 282- 287 
  14. Cockell, C. S., P. Rettberg, G. Horneck, M. R. Patel, H. Lamrner, and C. Cordoba-Jabonero. 2002. Ultrviolet protection in micro-habitats; lessons from the terrestrial poles applied to Mars. ESA SP 518: 215- 218 
  15. Romo, S. and C. Perez Martinez. 1997. The use of immobilization in alginate beads for long-term storage of Pseudoanabaena galeata (Cyanobacteria) in the laboratory. J. Phycol. 33: 1073- 1076 
  16. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge Press, pp. 304 
  17. Budel, B., U. Luttge, R. Stelzer, O. Huber, and E. Medina. 1994. Cyanobacteria of rocks and soil of the Orinoco lowlands and the Guayana uplands, Venezuela. Botanica Acta 107: 422- 431 
  18. Friedmann, E. I. and R. Ocampo. 1976. Endolithic blue green algae in the Dry Valley. Primary producers in the Antarctic desert ecosystem. Science 193: 1247- 1249 
  19. Ronto, G., A Berces, H. Larnrner, C. S. Cockell, G. J. Molina-Cuberos, M. R. Patel, and F. Selsis. 2003. Solar UV irradiation conditions on the surface of Mars. Photochem. Photobiol. 77(1): 34- 40 
  20. Banerjee, M., B. A. Whitton, and D. D. Wynn-Williams. 2000. Surface phosphomonoesterase activity of a natural immobilized system: Chroococcidiopsis in an Antarctic desert rock. J. Appl. Phycol. 12: 549- 552 
  21. Friedmann, E. I. 1982. Endolithic microorganism in the Antarctic cold desert. Science 215: 1045- 1053 
  22. Gibson, M. T. and B. A. Whitton. 1987. Influence of phosphorus on morphology and physiology of fresh water Chaetophora, Drapamaldia and Stigeoclonium (Chaetophorales, chlorophyta). Phycologia 26: 59- 69 
  23. Fischer, D., U. G. Schlosser, and P. Pohl. 1997. Exopolysaccharide production by cyanobacteria grown in enclosed photobioreactors and immobilized using white cotton towelling. J. Appl. Phycol. 9: 205-213 
  24. Mackinney, G. 1941. Absorption of light by chlorophyll. J. Biol. Chem. 140: 315- 322 
  25. Patel, M. R., A. Berces, C. Kolb, P. Rettberg, J. C. Zarnecki, and F. Selsis. 2003. Seasonal and diurnal variation in Martian surface UV irradiation: Biological and chemical implications for the Martian regolith. Int. J. Astrobiol. 2(1): 21-34 
  26. Wynn-Williams, D. D., N. C. Russell, and H. G. M. Edwards. 1997. Moisture and habitat structure as regulator for microalgal colonists in diverse Antarctic terrestrial habitats, pp. 77- 88. In W. B. Lyons, C. Howard-Williams, and I. Hawes (eds.), Ecosystems in Antarctic Ice free Landscapes. Balkerna, Rotterdam 
  27. Bell, R. A. and M. R. Sommerfield. 1987. Algal biomass and primary production within a temperature zone sandstone. Am. J. Bot. 74: 294- 297 
  28. Friedmann, E. I. 1978. Melting snow in the Dry Valley is the source of water for endolithic microorganisms. Antarct. J. U. S. 13: 162- 163 
  29. de la Torre, J. R., B. M. Goebel, E. L. Friedmann, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo dry valleys Antarctica. Appl. Environ. Microbiol. 69(7): 3858- 3867 
  30. Friedmann, E. I., A. Y. Druk, and C. P. Mckay. 1994. Limits of life and microbial extinction in the antarctic desert. Antarct. J. U. S. 29: 176- 179 
  31. Potts, M. 1994. Desiccation resistance of prokaryotes. Microbiol. Rev. 58: 755- 805 

이 논문을 인용한 문헌 (1)

  1. 2006. "" Journal of microbiology and biotechnology, 16(7): 1060~1067 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일