$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.

참고문헌 (18)

  1. Hase, E., Y. Morimura, S. Mihara, and H. Tamiya. 1958. The role of sulfur in the cell division of Chlorella. Arch. Mikrobiol. 31: 87- 95 
  2. Kim, J. R, Y. K. Oh. Y. J. Yoon, E. Y. Lee, and S. H. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrohacter sp. J. Microbiol, Biotechnol. 13: 717-724 
  3. Lee, J. H., J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim. 2000. Effects of NO and $SO_2$ on growth of highly-$CO_2$-tolerant microalgae. J. Microbiol. Biotechnol. 10: 338- 343 
  4. Melis, A., L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122: 127- 135 
  5. Gaffron, H. and J. Rubin. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26: 219- 240 
  6. Melis, A. 2002. Green alga hydrogen production: Progress, challenges and prospects. Int. J. Hydrogen Energy 27: 1217-1228 
  7. Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A. Melis. 2000. Microalgae: A green source of renewable $H_2$. Trends Biotechnol. 18: 506- 511 
  8. Wykoff, D. D., J. P. Davies, A. Melis, and A. R. Grossman. 1998. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117: 129- 139 
  9. Hopkins, W. G. and N. P. A. Winer. 2004. Introduction to Plant Physiology. 3rd Ed. pp. 63- 166. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A. 
  10. Harris, E. H. 1989. The Chlamydomonas Sourcebook, pp. 607- 608. Academic Press, Inc., San Diego, California, U.S.A. 
  11. Kosourov, S., A. Tsygankov, M. Seibert, and M. L. Ghirardi. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol. Bioeng. 78: 731-740 
  12. Lee, K. Y. and C. K. Lee. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechnol. 12: 979- 986 
  13. Pandey, V. and L. C. Rai. 2002. Interactive effects of UV-B and pesticides on photosynthesis and nitrogen fixation of Anabaena doliolum. J. Microbiol. Biotechnol. 12: 423- 430 
  14. Hirokawa, T., M. Hata, and H. Taketa. 1982. Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol. 23: 813- 820 
  15. Das, D. and V. Nejat. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13- 28 
  16. Zhang, L., T. Happe, and A Melis. 2002. Biochemical and morphological characterization of sulfur-deprived and $H_{2}-producing$ Chlamydomonas reinhardtii (green alga). Planta 214: 552- 561 
  17. Rai, L. C. H. D. Kumar, F. H. Mohn, and C. J. Soeder. 2000. Services of algae to the environment. J. Microbiol. Biotechnol. 10: 119- 136 
  18. Tsygankov, A., S. Kosourov, M. Seibert, and M. L. Ghirardi. 2002. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydrogen Energy 27: 1239- 1244 

이 논문을 인용한 문헌 (4)

  1. 2006. "" Journal of microbiology and biotechnology, 16(12): 1947~1953 
  2. 2006. "" Journal of microbiology and biotechnology, 16(2): 240~246 
  3. Kim, Jun-Pyo ; Sim, Sang-Jun 2006. "Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii" 한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, 17(3): 286~292 
  4. 2006. "" Journal of microbiology and biotechnology, 16(8): 1210~1215 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일