$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Radical Scavenging Potential of Hydrophilic Phlorotannins of Hizikia fusiformis

Algae v.20 no.1 , 2005년, pp.69 - 75  
Abstract

Hizikia fusiformis is well known edible brown seaweed both in Korea and Japan. It has been intensively studied due to its pronounced health benefits. In this study, the radical scavenging (antioxidative) activities of its hydrophilic phlorotannin constituents were studied. An aqueous extract/original extract (OE) of H. fusiformis was initially prepared with heat, enzymes and pH control treatments. Then the original extract was further fractionated (with methylene chloride and methanol) and crude hydrophilic phlorotannin extract (CHPE) was prepared. The radical scavenging activities of both OE and CHPE were determined by using electron spin resonance (ESR) spectrophotometric assays such as 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and alkyl radical assays. The CHPE reported significantly (p < 0.05) higher total phenolic (phlorotannins) content (1.23 mg ${\cdot}ml^{-1}$) than that of the OE (0.21 mg ${\cdot}ml^{-1}$). Both OE and CHPE have reported good radical scavenging activities and those activities were dose-dependent. The CHPE have demonstrated significantly higher radical scavenging activities than that of the OE. In comparison, the DPPH radical (6 $\times$ 10$^{-5}$ M) scavenging activities of all the CHPE concentrations (0.25, 0.5 and 1 mg ${\cdot}ml^{-1}$) tested were significantly higher (37.3, 78.2 and 91.6%, respectively) than that of the OE counterparts (11.4, 34.6 and 61.7%, respectively). Alkyl radical scavenging percentages of CHPE at 0.0625, 0.125, 0.25 and 0.5 mg${\cdot}ml^{-1}$ were significantly higher (34.3, 69.2, 80.4 and 88.7%, respectively) than that of the OE (16.6, 41.4, 62.3 and 77.4%, respectively). The percentages of hydroxyl radical scavenging activities of CHPE at the concentrations of 0.25, 0.5 and 1 mg ${\cdot}ml^{-1}$ were 32.5, 59.4 and 84.2 % respectively. Moreover, the hydroxyl radical scavenging activity of OE was quite lower than that of the CHPE. Therefore, these results suggest that the hydrophilic phlorotannins of H. fusiformis are potential radical scavengers thus, a great source of antioxidative nutraceuticles.

참고문헌 (31)

  1. Angeles M., Bayon P., Alcaide J.M., Polo M.C. and Pueyo E. 2007. Angiotensin I - converting enzyme inhibitory compounds in white and red wines. Food Chem. 100: 43-47 
  2. Athukorala Y. and Jeon Y.-J. 2005. Screening for Angiotensin 1- Converting Enzyme Inhibitory Activity of Ecklonia cava. J. Food Sci. and Nutr. 10: 134-139 
  3. Atkinson A.B. and Rovertson J. 1979. Captopril in the treatment of clinical hypertension and cardiac failure. Lanc. 2: 836- 839 
  4. Cha S.H., Ahn G.N., Heo S.J., Kim K.N., Lee K.W., Song C.B., Cho S.K. and Jeon Y.J. 2006. Screening of extracts from Marine Green and Brown Algae in Jeju for Potential Marine Angiotensin - I Converting Enzyme (ACE) Inhibitory Activity. J. Korean Soc. Food Sci. Nutr. 35: 307-314 
  5. Curtiss C., Chon J.N., Vrobel T. and Francious J.A. 1978. Role of the rennin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58: 763- 770 
  6. Dzau V.J. 2001. Tissue Angiotensin and Pathobiology of Vascular Disease: A Unifying Hypothesis. Hypertension 37: 1047-1052 
  7. Fujita H and Yokoyama M. 2000. Classification and antihypertensive activity of angiotensin I - converting enzyme inhibitory peptide derived from food proteins. J. Food Sci. 65: 564-569 
  8. Ikeda K., Kitamura A., Machida H., Watanabe M., Negishi H., Hiraoka J. and Nakano T. 2003. Effect of Undaria pinnatifida (WAKAME) on the development of cerebrovascular disease in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharm. and physic. 30: 44-48 
  9. Je J.Y., Park P.J., Byun H.G., Jung W.K. and Kim S.K. 2005. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bior. Tech. 96: 1624-1629 
  10. Joshipura K.J., Hu F.B. and Manson J.E. 2001. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 134: 1106-1114 
  11. Jung W.K., Je J.Y., Park P.J., Son B.W., Kim H.C., Choi Y.K. and Kim S.K. 2004. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Che. 94: 26-32 
  12. Kato H. and Susuki T. 1971. Bradykinin-potentiatinf peptides from venom of Agkistrodon- halys blomhoffii: Isolation of five bradykinin potentiators B and C. Bioche. 10: 972-980 
  13. Kim D.-S., Park D.-C. and Do J.-R. 2002. Angiotensin I converting enzyme inhibitory activity of Krill (Euphausia superba) Hydrolysate. Fisheries Sci. and tech. 5: 21-27 
  14. Kunio S. and Takahisa N. 2000. Identification of an antihypertensive peptide from peptic digest of Wakame (Undaria pin- natifida). J. Nutr. Biochem. 11: 450-456 
  15. Kunio S., Keisei M. and Chen J.R. 2004. Antihypertensive effects of Undaria pinnatifida (Wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 15: 267-272 
  16. Maruyama S., Mitachi H., Awaya J., Kurono M., Tomizuka N. and Suzuki H. 1989. Angiotensin I - converting enzyme inhibitory activity of the C-terminal hexapeptide of $\alpha$s1- casein. Agri. and Biol. Chem. 53: 2107-2114 
  17. Miyoshi S., Ishikawa H., Kaneko T., Fukui F., Tanaka H. and Maruyama S. 1991. Structure and activity of angiotensinconverting enzyme inhibitors in an $\alpha$-zein hydrolysate. Agr. and Biol. Chem. 55: 1313-1318 
  18. Mustafa M.G. and Nakagawa H. 1995. A review: Dietary benefits of algae as an additive in fish feed. The Isreali J. of Aqua. 47: 155-162 
  19. Mustafa M.G., Wakamatsu S., Takeda T.A., Umino T. and Nakagawa H. 1995. Effects of algae meal as feed additive on growth, feed efficiency, and body composition in Red Sea Bream. Fish. Sci. 61: 25-28 
  20. Nakano T., Hidaka H., Ucjida J., Nakajima K. and Hata Y. 1998. Hypetensive effects of wakame. J. Jpn. Soc. Clin. Nutr. 20: 92 
  21. Ondetti M.A. 1977. Desine of specific inhibitors of angiotensincoverting enzyme: New ckass of orally active antihypetensive agents. Sci. 196: 441-444 
  22. Rencland R. and Lithell H. 1994. Angiotensin-converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scand. J. Clin. Lab. Invest. 54: 105-111 
  23. Sato M., Hoskawa T., Yamagichi T., Nakano T., Muramoto K. and Kahara T. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from Wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J of Agri. and Food Chem. 50: 6245-6252 
  24. Sawayama T, Itokawa A., Shumada K., Doi Y., Kimura K. and Nishimura H. 1990. Synthesis of 1-[(s)-acetylthio-2-methylpropanoyl]- L-propyl-L-phenylanine (Alacepril) and one of its active metabolites, the desacetyl derivation (DU-1227). Chem. Pharm. Bull. 38: 529-531 
  25. Seppo L., Jauhiainen T., Poussa T. and Korpela R. 2003. A fermented milk high in bioactive peptides has a blood pressure- lowering effect in hypertensive subjects. American J. of Clin. Nutr. 77: 326-330 
  26. Shin Z.-I., Yu R., Park S.-A., Chung D.-K., Nam S.-H. and Kim K.-S. 2001. His-His-Leu, an angiotensin I-converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. of Agr. and Food Chem. 49: 3004-3009 
  27. Ukeda H., Matsuda H., Kuroda H., Osajima K., Matsufuji H. and Osajima Y. 1991. Preparation and separation of angiotensin I converting enzyme inhibitory peptides. Nippon Noge. Kai. 65: 1223-1228 
  28. Lee T.G, Yeum D.M. and Kim S.B. 2002. Characteristics of angiotensin converting enzyme inhibitory peptides from thermolysin hydrolysate of manila clam, Ruditapes philippinarum proteins. J. of Korean Fish. Soc. 35: 529-533 
  29. Cushman D.W. and Cheung H.S. 1971. Spectrophotometric assay and properties of the angiotensin-conveting enzyme of rabbit lung. Biochemical Pharmacology 20: 1637-1648 
  30. Liu J.C., Hsu F.L., Tsai J.C., Chan P., Liu J.Y., Thomas G.N., Tomlinson B., Lo M.Y. and Lin J.Y. 2003. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 73: 1543-1555 
  31. Ondetti M.A., Rubin B. and Cushman D.W. 1982. Enzyme of the rennin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51: 283-308 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일