• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


The capability of utilizing a TCA cycle intermediates as the sole carbon source by the multi-vitamin auxotrophic yeast Torulopsis glabrata CCTCC M202019 was demonstrated with plate count method. It is indicated that T. glabrata could grew on a medium with one of the TCA cycle intermediates as the sole carbon source, but more colonies were observed when glucose, acetate and one of the TCA cycle intermediates coexisted in the medium. Among the intermediates of the TCA cycle examined in this study, cell growth was improved by supplementing oxaloacetate. Further investigation showed that the presence of acetate was necessary when oxaloacetate was supplemented. By supplementing with 10 g/L of oxaloacetate in pyruvate batch fermentation, dry cell weight increased from 11.8 g/L to 13.6 g/L, and pyruvate productivity was enhanced from $0.96\;gL^{-1}h^{-1}\;to\;1.19 gL^{-1}h^{-1}$ after cultivation of 56 h. The yield of pyruvate to glucose was also improved from 0.63 g/g to 0.66 g/g. These results indicate that under vitamins limitation, the productivity and yield of pyruvate could be enhanced via an increase of cell growth by the supplementation of oxaloacetate.

참고문헌 (21)

  1. Liu, L. M., Y. Li, H. Z. Li, and J. Chen (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett. Appl. Microbiol. 39: 199-206 
  2. Hua, Q. and K. Shimizu (1999) Effect of dissolved oxygen concentration on the intracellular flux distribution for pyruvate fermentation. J. Biotechnol. 65: 135-147 
  3. Miyata, R. and T. Yonehara (1996) Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J. Ferment. Bioeng. 82: 475-479 
  4. Barnett, J. A. and H. L. Kornberg (1960) Utilization by yeast of acids of the tricarboxylic acid cycle. J. Gen. Microbiol. 23: 65-82 
  5. Barnett, J. A., R. W. Payne, and D. Yarrow (1990) Yeast Characteristics and Identification. University Press Cambridge, UK 
  6. Salmon, J. M. (1987) L–malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochem. Biophys. Acta 901: 30-40 
  7. Gombert, A. K., M. Moreira dos Santos, B. Christensen, and J. Nielsen (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183: 1441-1451 
  8. Liu, L. M., Y. Li, G. C. Du, and J. Chen (2002) Progress in biotechnological production of pyruvic acid (In Chinese). Chinese J. Biotechnol. 18: 651-655 
  9. Rodriguez, S. and R. J. Thornton (1990) Factors influencing the utilization of L-malate by yeasts. FEMS Microbiol. Lett. 72: 17-22 
  10. Levente, K. and P. K. Christian (2003) Aspergillus niger citric acid accumulation: Do we understand this well working black box? Appl. Microbiol. Biotechn. 61: 189- 196 
  11. Lamprecht, W. and F. Heinz (1984) Pyruvate. pp. 570- 577. In: Bergmeyer, H. U. (ed.). Methods of Enzymatic Analysis. VCH, Weinheim, Germany 
  12. Palmieri, L., A. Vozza, G. Agrimi, V. De Marco, M. J. Runswick, F. Palmieri, and J. E. Walker (1999) Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J. Biol. Chem. 74: 22184-22190 
  13. Miller, G. (1951) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426- 428 
  14. Corte, R. M., C. Leao, and N. Van U (1989) Transport of L(-)malic acid and other dicarbonxylic acids in the yeast candidas sphaerica. Appl. Microbiol. Biotechnol. 31: 551-555 
  15. Li, Y., J. Chen, and S. Y. Lun (2001) Efficient pyruvate production by a mulit-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl. Microbiol. Biotechnol. 55: 680-685 
  16. Green, L. S. and D. W. Emerich (1997) Bradyrhizobium japonicum does not require $\alpha$-ketoglutarate dehygenase for growth on succinate or malate. J. Bacteriol. 179: 194- 201 
  17. Corte, R. M. and C. Leao (1990) Transport of L(-) malic acid and other dicarbonxylic acids in the yeast Hansenula anomala. Appl. Microbiol. Biotechnol. 56: 1109-1113 
  18. Xu, D. P., C. P. Madrid, M. Rohr, and C. P. Kubcek (1989) Influence of type and concentration of the carbon source on citric acid production by Aspergillus niger. Appl. Microbial. Biotechnol. 30: 553-558 
  19. Cassio, F. and C. Leao (1993) A comparative study on the transport of L(-)malic acid and other short chain carboxylic acids in the yeast Candida utilis: Evidence for a general organic acid permease. Yeast 9: 743-752 
  20. Pronk, J. T., H. Y. Steensma, and J. P. Van Dijken (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12: 1607-1633 
  21. Antoun, H., L. M. Bordeleau, and R. Sauvageau (1984) Utilization of tricarboxylic acid cycle intermediates and symbiotic efficiency in Rhizobium meliloti. Plant. Soil. 77: 29-38 

이 논문을 인용한 문헌 (1)

  1. 2007. "" Biotechnology and bioprocess engineering, 12(3): 222~227 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일