$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.

참고문헌 (17)

  1. Carcione, J.M. and Seriani, G. (1998), 'Torsional waves in lossy cylinders', J. Acoustical Soc. Am., 103, 760-765 
  2. Carcione, J.M. and Flavio, P. (2000), 'Simulation of stress waves in attenuating drill strings including piezoelectric sources and sensors', J. Acoustical Soc. Am., 108, 53-64 
  3. Cho, H., Kardomateas, G.A. and Valle, C.S. (1998), 'Elastodynamic solution for the thermal shock stress in an orthotropic thick cylinder shell', J. Appl. Mech., ASME, 65(1), 184-193 
  4. Cinelli, G. (1966), 'Dynamic vibrations and stress in the elastic cylinders and spheres', J. Appl. Mech., ASME, 825-830 
  5. Clark, S.K. (1956), 'Torsional wave propagation in hollow cylindrical bars', J. Acoustical Soc. Am., 28, 1163-1165 
  6. Eringen, A.C. and Suhubi, E.S. (1975), Elastodynamics, Vol. 2, (Linear Theory) Academic Press. New York 
  7. Gazis, D.C. (1959a), 'Three-dimensional investigation of the propagation of waves in hollow circular cylinders, 1. Analytic foundation', J. Acoustical Soc. Am., 31, 568-573 
  8. Gazis, D.C. (1959b), 'Three-dimensional investigation of the propagation of waves in hollow circular cylinders, II. Analytic foundation', J. Acoustical Soc. Am., 31, 573-578 
  9. Haines, D.W. and Lee, P.C.Y (1971), 'Approximate theory of torsional wave propagation in elastic circular composite cylinders', J. Acoustical Soc. Am., 49, 211-219 
  10. Kim, J.O. and Haim, H.H. (1991), 'Torsional stress waves in a circular cylinder with a modulated surface', J. Appl. Mech., ASME, 58, 710-715 
  11. Lighthill, M.J. (1958), An Introduction to Fourier Analysis and Generalized Function, Cambridge University Press 
  12. Liu, C.G. and Wang, D. (1995), 'Spread problem on torsion wave in a infinite long elastic hollow cylinder', Science Publisher in China 
  13. Pao, Y.H. and Ceranoglu, A.N. (1978), 'Determination of transient responses of a thick-walled spherical shell by the ray theory', J. Appl. Mech., ASME, 45, 114-122 
  14. Soldatos, K.P. and Ye, J.Q. (1994), 'Wave propagation in anisotropic laminated hollow cylinders of infinite extent', J. Acoustics Soc. Am., 96(5), 744-752 
  15. Wang, X., Zhang, K. and Zhang, W. (2000), 'Theoretical solution and finite element solution for an orthotropic thick cylindrical shell under impact load', J. Sound Vib., 236, 129-140 
  16. Armenaakas, A.E. (1965), 'Torsional waves in composite rods', J. Acoustical Soc. Am., 38, 439-446 
  17. Cinelli, G. (1965), 'An extension of the finite Hankel transform and application', Int. J. Engng. Sci., 3, 539-550 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일