$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

This paper aims at formulating various statistical models for the study of a ten year Weigh-in-Motion (WIM) data collected from various WIM stations in Hong Kong. In order to study the bridge live load model it is important to determine the mathematical distributions of different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc. Each of the above parameters is analyzed by various stochastic processes in order to obtain the mathematical distributions and the Maximum Likelihood Estimation (MLE) method is adopted to calculate the statistical parameters, expected values and standard deviations from the given samples of data. The Kolmogorov-Smirnov (K-S) method of approach is used to check the suitability of the statistical model selected for the particular parameter and the Monte Carlo method is used to simulate the distributions of maximum value stochastic processes of a series of given stochastic processes. Using the statistical analysis approach the maximum value of gross vehicle weight and axle weight in bridge design life has been determined and the distribution functions of these parameters are obtained under both free-flowing traffic and dense traffic status. The maximum value of bending moments and shears for wide range of simple spans are obtained by extrapolation. It has been observed that the obtained maximum values of the gross vehicle weight and axle weight from this study are very close to their legal limitations of Hong Kong which are 42 tonnes for gross weight and 10 tonnes for axle weight.

참고문헌 (19)

  1. Ang, A.H.S. and Tang, W.H. (1984), Probabilistic Concepts in Engineering Planning and Design, Vol. 2, John Wiley & Sons, New York 
  2. Benjamin, J.R. and Cornell, C.A. (1970), Probability, Statistics, and Decision for Civil Engineers, McGraw-Hill Book Company, USA 
  3. Hahn, J. and Samuel. (1994), Statistical Models in Engineering, New York, John Wiley 
  4. Harman, D.J. and Davenport, A.G. (1976), The Formulation of Vehicular Loading for the Design of Highway Bridges in Ontario, Ontario joint transportation and communications research program 
  5. Heywood, R.J. (1992), 'A multiple presence load model for bridges', Proc. of ASCE Conf. on Probabilistic Mechanics and Structural and Geotechnical Reliability, Denver, Colorado 
  6. Heywood, R.J. (1992), 'Bridge live load models from weigh-in-motion data', Ph.D. Thesis, University of Queensland, Australia 
  7. Illinois (1999), Programming with SPSS Syntax and Macros (v10.0 Revised), SPSS Inc., Chicago 
  8. Kottegoda and Rosso (1998), Statistics, Probability, and Reliability for Civil and Environmental Engineers, McGraw-Hill International Editions, Singapore 
  9. Lin, Z.M. (1990), The Reliability Design and Estimation of Structural Engineering (in Chinese) 
  10. Miao, T.J. (2001), 'Bridge live load models with the special reference to Hong Kong', Ph.D thesis, the Hong Kong Polytechnic University 
  11. Miao, T.J. and Chan, T.H.T (2002), 'Bridge live load models from WIM data', Eng. Struct., 24, 1071-1084 
  12. Norman, L.J. (1994), Continuous Univariate Distributions, New York, Wiley & Sons 
  13. Nowak, A.S. (1991), 'Proposed LRFD bridge design code', Austroads Conference, Brisbane 
  14. Nowak, A.S. (1994), 'Load model for bridge design code', Canadian Journal of Civil Engineering, 21, 36-49 
  15. Nowak, A.S. and Collins, K.R. (2000), Reliability of Structures, McGraw Hill, New York 
  16. Rohatgi, V.K. (1976), An Instruction to Probability Theory and Mathematical Statistics 
  17. Seshadri, (1993), The Inverse Gaussian Distribution: A Case Study in Exponential Families, Oxford, Clarendon Press. 
  18. Tweedie, M.C.K. (1957), 'Statistical properties of inverse Gaussian distributions, I', Annals of Mathematical Statistics, 28, 362-337 
  19. Tweedie, M.C.K. (1957), 'Statistical properties of inverse Gaussian distributions, II, Annals of Mathematical Statistics, 28, 696-705 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일