$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Wind induced vibrations of long electrical overhead transmission line spans: a modified approach

Wind & structures v.8 no.2 , 2005년, pp.89 - 106  
Abstract

For estimating the vortex excited vibrations of overhead transmission lines, the Energy Balance Principle (EBP) is well established for spans damped near the ends. Although it involves radical simplifications, the method is known to give useful estimates of the maximum vibration levels. For very long spans, there often is the need for a large number of in-span fittings, such as in-span Stockbridge dampers, aircraft warning spheres etc. This adds complexity to the problem and makes the energy balance principle in its original form unsuitable. In this paper, a modified version of EBP is described taking into account in-span damping and in particular also aircraft warning spheres. In the first step the complex transcendental eigenvalue problem is solved for the conductor with in-span fittings. With the thus determined complex eigenvalues and eigenfunctions a modified energy balance principle is then used for scaling the amplitudes of vibrations at each resonance frequency. Bending strains are then estimated at the critical points of the conductor. The approach has been used by the authors for studying the influence of in-span Stockbridge dampers and aircraft warning spheres; and for optimizing their positions in the span. The modeling of the aircraft warning sphere is also described in some detail.

참고문헌 (20)

  1. EPRI (1979), Transmission Line Reference Book, Wind Induced Conductor Motion, Palo Alto, California: Electrical Power Research Institute. 
  2. Hadulla, T. (2000), Wirbelerregte Schwingungen in Freileitungsbündeln, PhD thesis, Institut fur Mechanik, Technische Universitat Darmstadt, Germany. 
  3. Hagedorn, P. (1980), "Ein einfaches Rechenmodell zur Berechnung winderregter Schwingungen an Hochspannungsleitungen mit Dampfern", Ingenieur-Archiv, 49, 161-177. 
  4. Hagedorn, P. (1982), "On the computation of damped wind excited vibrations of overhead transmission lines", J. Sound Vib., 83(2), 253-271. 
  5. Noiseux, D.U. (1992), "Similarity laws of the internal damping of stranded cables in transverse vibrations", IEEE Transections on Power Delivery, 7(3), 1574-1581, July. 
  6. Rawlins, C.B. (1983), "Wind tunnel measurements of the power imparted to a model of a vibrating conductor", IEEE Transactions on Power Apparatus & Systems, PAS-102(4), 963-971, April. 
  7. Schafer, B. (1981), Zur Entstehung und Unterdrückung winderregter Schwingungen an Freileitungen, PhD thesis, Technische Hochschule Darmstadt, Fachbereich Mechanik. 
  8. Staubli, T. (1979), "An investigation of the fluctuating forces on a transverse-oscillating circular cylinder", In EUROMECH-Colloquium 119, London. 
  9. Verma, H., Chakraborty, G., Krispin, H.J. and Hagedorn, P. (2003), "On the modeling of wind induced vibrations of long span electrical transmission lines", Proceedings of Fifth International Symposium on Cable Dynamics, Santa Margherita, Italy, 53-60, September. 
  10. Allnut, J.G. and Rowbottom, M.D. (1974), "Damping of aeolian vibration on overhead lines by vibration dampers", Proceeding of Institute of Electrical and Electronic Engineers, 121, 1175-1178. 
  11. Bahtovska, E. (2000), "The energy balance for damped wind-excited vibrations", Facta Universitatis, 1(7), 769-773. 
  12. Belloli, M., Cigada, A., Diana, G. and Rocchi, D. (2003), "Wind tunnel investigation on vortex induced vibration of a long flexible cylinder", Proceedings of Fifth International Symposium on Cable Dynamics, Santa Margherita, Italy, 247-254, September. 
  13. Bishop, R.E.D. and Hassan, A.Y. (1964), "The Lift and Drag Forces on a Circular Cylinder in a Flowing Fluid", In Proceedings of the Royal Society of London 277 (Series A), 51-75. 
  14. Brika, D. and Laneville, A. (1995), "A laboratory investigation of the aeolian power imparted to a conductor using a flexible circular cylinder", Proceedings of the Royal Society of London 277(Series A), 23-27, July. 
  15. Chen, S.S. (1987), Flow-Induced Vibration of Circular Cylindrical Structures, Washington, New York, London: Hemisphere Publishing Corporation. 
  16. Claren, R. and Diana, G. (1966), "Vibrazioni dei conduttori", L'Energia Elettrica, 10. 
  17. Cole, J. (1968), Perturbation Methods in Applied Mathematics, Waltham, Mass. 
  18. Dhotarad, M.S., Ganesan, N. and Rao, B.V.A. (1978), "Transmission line vibration", J. Sound Vib., 60, 217-327. 
  19. Diana, G. and Falco, M. (1971), "On the forces transmitted to a vibrating cylinder by a blowing fluid", Mechanica, 6, 9-22. 
  20. Hagedorn, P., Mitra, N. and Hadulla, T. (2002), "Vortex-excited vibrations in bundled conductors: A mathematical model", J. Fluids Struct., 16(7), 843-854. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일