$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

This paper describes the work of the International Association for Wind Engineering Working Group E -Dynamic Response, one of the International Codification Working Groups set up at the Tenth International Conference on Wind Engineering in Copenhagen. Comparisons of gust loading factors and wind-induced responses of major codes and standards are first reviewed, and recent new proposals on 3-D gust loading factor techniques are introduced. Then, the combined effects of along-wind, crosswind and torsional wind load components are discussed, as well as the dynamic characteristics of buildings. Finally, the mathematical forms of along-wind velocity spectra for along-wind response calculation and codification of acceleration criteria are discussed.

참고문헌 (52)

  1. Simiu, E. (1976), "Equivalent static wind loads for tall buildings design", J. Struct. Div., ASCE, 102, 719-737. 
  2. Solari, G. (1982), "Alongwind response estimation: closed form solution", J. Struct. Div., ASCE, 108, 225-244. 
  3. Solari, G. and Pagnini, L.C. (1999), "Gust buffeting and aeroelastic behaviour of poles and monotubular towers",J. Fluid and Struct., 13, 877-905. 
  4. Solari, G. and Repetto, M.P. (2002), "General tendencies and classification of vertical structures under windloads", J. Wind Eng. Ind. Aerodyn., 90, 1299-1319. 
  5. Tamura, Y., Kawai, H., Uematsu, Y., Marukawa, H., Fujii, K. and Taniike, Y. (1996), "Wind loads and windinducedresponse estimations in the Recommendations for loads on buildings", AIJ 1993, EngineeringStructures, 18, 399-411. 
  6. Tamura, Y., Kikuchi, H. and Hibi, K. (2002a), "Quasi-static wind load combinations for low- and middle-risebuildings AGD2002 symposium preprints", Engineering Symposium to Honor Alan G. Davenport for His 40Years of Contributions, The University of Western Ontario, Canada, C3-1 - C3-12. 
  7. Tamura, Y., Kikuchi, H. and Hibi, K. (2002b), "Quasi-static wind load combinations for buildings", The SecondInternational Symposium on Wind and Structures, Busan, Korea, August 21-23, 61-68. 
  8. Tamura, Y., Suda, K. and Sasaki, A. (2000), "Damping in buildings for wind resistant design", InternationalSymposium on Wind and Structures for the 21st Century, Cheju, Korea, 115-130. 
  9. Tschanz, T. and Davenport, A.G. (1983), "The base balance technique for the determination of dynamic windloads", J. Wind Eng. Ind. Aerodyn., 13, 429-439. 
  10. Vickery, B.J. and Basu, R.I. (1984), "The response of reinforced concrete chimneys to vortex shedding", Eng.Struct., 6, 324-333. 
  11. Zhou, Y. and Kareem, A. (2001), "Gust loading factor: new model", J. Struct. Eng., ASCE, 127(2), 168-175. 
  12. Zhou, Y., Kareem, A. and Gu, M. (2002), "On the mode shape corrections for wind load effects on tallbuildings", J. Eng. Mech., ASCE, 128(1), 15-23. 
  13. Zhou, Y., Kijewski, T. and Kareem, A. (2002), "Along-wind load effects on tall buildings: a comparative studyof major international codes and standards", J. Struct. Eng., ASCE, 128(6), 788-796. 
  14. GB50009 (2001), Chinese Standard for wind loads. 
  15. Gurley, G., Kijewski, T. and Kareem, A. (2003), "First- and higher-order correlations determination usingwavelet transform", J. Eng. Mech., ASCE, 129(2), 188-200. 
  16. Hibi, K., Tamura, Y. and Kikuchi, H. (2003), "Peak normal stresses and wind load combinations of middle-risebuildings", Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 20057,September, 113-114 (in Japanese). 
  17. Ho, T.C.E., Lythe, G.R. and Isyumov, N. (1999), "Structural loads and responses from the integration ofinstantaneous pressure", Wind Engineering into the 21st Century, 3 (editors: Larsen, Larose and Livesey). 
  18. Holmes, J.D. (2002), "Effective static load distributions in wind engineering", J. Wind Eng. Ind. Aerodyn., 90,91-109. 
  19. Hui, Z., Bachmann, A. and Graubner, C.A. (2001), "Wind loads on high-rise structures - Comparative study ofcode provisions according to EUROCODE1 and Chinese Code", Proc. APCWE V, Kyoto, Japan, 613-616. 
  20. Irwin, A.W. (1979), "Human response to dynamic motion of structures", The Structural Engineer, 56A(9), 237-244. 
  21. Irwin, A.W. (1986), "Motion in tall buildings", Proceedings of Conf. Tall Buildings and Urban Habitat "SecondCentury of the Skyscraper". Van Nostrand, Chicago, 759-778. 
  22. ISO 6897 (1984), Guidelines for the Evaluation of the Response of Occupants of Fixed Structures, EspeciallyBuildings and Off-Shore Structures, to Low Frequency Horizontal Motion (0.063 to 1 Hz), Geneva. 
  23. Isyumov, N. (1995), "Motion perception tolerance and mitigation", Proc. 5th World Congress of Council on TallBuildings and Urban Habitat, Amsterdam. 
  24. Kareem, A. (1982), "Measurements of total dynamic loads from surface pressures", Proceedings of theInternational Workshop on Wind Tunnel Modeling Criteria and Techniques. Ed. T. A. Reinhold; National Bureau of Standards, Gaithersburg, Maryland, Cambridge University Press. 
  25. Kareem, A. (1985), "Lateral-torsional motion of tall buildings to wind loads", J. Struct. Eng., ASCE, 111(11),2479-2496. 
  26. Kasperski, M. (1992), "Extreme wind load distributions for linear and nonlinear design", Eng. Struct., 14, 27-34. 
  27. Kijewski, T. and Kareem, A. (1998), "Dynamic wind effects: a comparative study of provisions in codes andstandards with wind tunnel data", Wind and Struct., An Int. J., 1(1), 77-109. 
  28. Melbourne, W.H. (1975), "Probability distributions of response of BHP house to wind action and modelcomparisons", J. Indus. Aerody., 1(2), 167-175. 
  29. Melbourne, W.H. (1998), "Comfort criteria for wind-induced motion in structures", Struct. Eng. Int., 40-44. 
  30. Melbourne, W.H. and Cheung, J.C.K.C. (1988), "Designing for serviceable accelerations in tall buildings", 4thIntl Conf. on Tall Buildings, Hong Kong and Shanghai, 148-155. 
  31. NBCC (1995), User's Guide-NBC1995 Structural Commentaries (Part 4). 
  32. Piccardo, G. and Solari, G. (2002), "3-D gust effect factor for slender vertical structures", Probabilistic Eng. Mech., 17, 143-155. 
  33. Repetto, M.P. and Solari, G. (2004), "Equivalent static wind actions on vertical structures", J. Wind Eng. Ind.Aerodyn., 92, 335-357. 
  34. AIJ-GBV (1991), "Guidelines for the evaluation of habitability to building vibration", Architectural Institute of Japan (English summary: Goto, T., Ohkuma, T., Tamura, Y. and Nakamura, O., Guidelines for the evaluation of habitability to building, Compact Papers, ASCE Structures Congress '92, San Antonio, April 13-15, 1992). 
  35. AIJ-RLB-1993 (1993), Recommendations for Loads on Buildings, Architectural Institute of Japan (English version, 1996). 
  36. AIJ-RLB-2004 (2004), Recommendations for Loads on Buildings, Architectural Institute of Japan (in Japanese). 
  37. AS/NZ1170.2 (2002), Australian/New Zealand Standard, Structural design actions, Part 2: wind actions,Standards Australia & Standards New Zealand. 
  38. AS1170.2 (1989), SAA Loading Code, Part 2 - Wind forces, AS1170.2-89, Standards Australia. 
  39. Asami, Y. (2000), "Combination method for wind loads on high-rise buildings", Proceedings of the 16thNational Symposium on Wind Engineering, Tokyo, Japan, 531-534 (in Japanese). 
  40. Asami, Y. (2002), "Comparisons of gust loading factors in codes and standards", Japanese Domestic Committeeon TC98/SC3/WG2 for ISO4354 Revision, 5. 
  41. ASCE7-98 (2000), "Minimum design loads for buildings and other structures", American Society of CivilEngineers, Reston, VA. 
  42. Boggs, D.W. and Peterka, J.A. (1989), "Aerodynamic model tests of tall buildings", J. Eng. Mech., ASCE, 115(3), 618-635. 
  43. BS 6399 (1997), Part 2, Loading for building Structures. Part 2. Code of practice for wind loads, BritishStandards Institution. 
  44. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., ASCE, 93, 11-34. 
  45. Davenport, A.G. (1995), "How can we simplify and generalize wind loads", J. Wind Eng. Ind. Aerodyn., 54-55,657-669. 
  46. Denoon, R.O. (2000), "Designing for wind-induced serviceability accelerations in buildings", PhD Thesis,University of Queensland. 
  47. Eurocode ENV1991-2-4 (1994), EUROCODE 1: Basis of Design and Actions on Structures, Part 2.4: WindActions, CEN/TC 250/Sc1, 1994. 
  48. Eurocode prEN1991-2-4 (2004), EUROCODE 1: Design and Actions on Structures, Part 1.4: General Actions -Wind Actions, CEN TC 250. 
  49. Melbourne, W.H. (1983), "Notes on recommendations on acceleration criteria for occupancy comfort in tallstructures", Commercial Wind Tunnel Investigation Reports, MEL Consultants. 
  50. Piccardo, G. and Solari, G. (2000), "3-D wind-excited response of slender structures: Closed form solution", J.Struct. Eng., ASCE, 126, 936-943. 
  51. Zhou, Y., Kijewski, T. and Kareem, A. (2003), "Aerodynamic loads on tall buildings: an interactive database", J.Struct. Eng., ASCE, 129(3), 394-404. 
  52. Hong Kong Code of practice on wind effects (1996), Buildings Department, Draft. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일