$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

This paper deals with the buckling behavior of thin-walled aboveground tanks under wind load. In order to do that, the wind pressures are obtained by means of wind-tunnel experiments, while the structural non linear response is computed by means of a finite element discretization of the tank. Wind-tunnel models were constructed and tested to evaluate group effects in tandem configurations, i.e. one or two tanks shielding an instrumented tank. Pressures on the roof and on the cylindrical part were measured by pressure taps. The geometry of the target tank is similar in relative dimensions to typical tanks found in oil storage facilities, and several group configurations were tested with blocking tanks of different sizes and different separation between the target tank and those blocking it. The experimental results show changes in the pressure distributions around the circumference of the tank for half diameter spacing, with respect to an isolated tank with similar dimensions. Moreover, when the front tank of the tandem array has a height smaller than the target tank, increments in the windward pressures were measured. From the computational analysis, it seems that the additional stiffness provided by the roof prevents reductions in the buckling load for cases even when increments in pressures develop in the top region of the cylinder.

참고문헌 (20)

  1. Zdravkovich, M.M. (1977), "Review of flow interference between two circular cylinders in various arrangements", ASME J. Fluids Eng., 99(4), 618-632. 
  2. Portela, G. (2004), Wind Pressures and Buckling of Metal Cantilever Tanks, Ph.D. Dissertation, University of Puerto Rico at Mayagüez, Puerto Rico. 
  3. Portela, G. and Godoy, L.A. (2005), "Wind pressures and buckling of cylindrical steel tanks with a conical roof", J. Constr. Steel Res., 61, 786-807. 
  4. Resinger, F. and Greiner, R. (1982), Buckling of Wind-loaded Cylindrical Shells - Application to Unstiffened and Ring-stiffened Steel Tanks, in Buckling of Shells, Ed. Ramn E., Springer, Berlin, 217-281. 
  5. Tsutsui, T., Igarashi, T. and Kamemoto, K. (1997), "Interactive flow around two circular cylinders of different diameters at close proximity. Experiment and numerical analysis by vortex method", J. Wind Eng. Ind. Aerodyn., 67, 279-291. 
  6. Virella, J.C. (2004), Buckling of Tanks Subject to Earthquake Loadings, Ph.D. Dissertation, University of Puerto Rico at Mayagüez, Puerto Rico. 
  7. Jaca, R. and Godoy, L.A. (2003), "Colapso de un tanque metálico en construccion bajo la accion del viento", Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 3(1), 73-83 (in Spanish). 
  8. Kundurpi, P.S., Savamedam, G. and Johns, D.J. (1975), "Stability of cantilever shells under wind loads", J. the Eng. Mech. Div., ASCE, 101(5), 517-530. 
  9. Orlando, M. (2001), "Wind-induced interference effects on two adjacent cooling towers", Eng. Struct., 23, 979- 992. 
  10. Godoy, L.A. (1996), "Catastrofes produzidas por foracoes no mar do caribe, capitulo 26 in acidentes estruturais na construcao civil", 2 (Ed. A. J. P. da Cunha, N. A. Lima, V. C. M. de Souza), Editora Pini, Sao Paulo, Brasil, 255-262 (in Portuguese). 
  11. Godoy, L.A. and Flores, F.G. (2002), "Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks", Struct. Eng. and Mech., 13(5), 533-542. 
  12. Greiner, R. (1998), Cylindrical shells: Wind loading, Chapter 17 in: Silos (Ed. C. J. Brown and L. Nilssen), EFN Spon, London, pp. 378-399. 
  13. Greiner, R. and Derler, P. (1993), Effect of Imperfections on Wind Loaded Cylindrical Shells, Institute for Steel and Shell Structures, Technical University of Graz, A-8010, Graz, Austria. 
  14. Gu, Z. and Sun, T. (2001), "Classifications of flow pattern on three circular cylinders in equilateral-triangular arrangements", J. Wind Eng. Ind. Aerodyn., 89, 553-568. 
  15. Abaqus (2002), Abaqus User Manual-version 6.4. Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, USA. 
  16. API 650 (1991), Welded Steel Tanks for Oil Storage, American Petroleum Institute Standard, Chapter 3, Washington, D.C.. 
  17. ASCE 7 Standard (2002), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA. 
  18. Esslinger, M., Ahmed, S. and Schroeder, H. (1971), "Stationary wind loads of open topped and roof-topped cylindrical silos", Der Stalbau, pp. 1-8 (in German). 
  19. Flores, F.G. and Godoy, L.A. (1998), "Buckling of short tanks due to hurricanes", Eng. Struct., 20(8), 752-760. 
  20. Schmidt, H., Binder, B. and Lange, H. (1998), "Postbuckling strength design of open thin-walled cylindrical tanks under wind load", Thin-Walled Structures, 31, 203-220. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일