$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

전해질 농도가 양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성에 미치는 영향

EFFECT OF ELECTROLYTE CONCENTRATION ON THE SURFACE CHARACTERISTICS OF ANODIZED AND HYDROTHERMALLY-TREATED TI-6AL-7NB ALLOY

Abstract

Statement of problem: Ti-6Al-7Nb alloy is used instead of Ti-6Al-4V alloy that was known to have toxicity. Purpose: This study was performed to investigate the effect of electrolyte concentration on the surface characteristics of anodized and hydrothermally-treated Ti-6Al-7Nb alloy Materials and methods: Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1,000 SiC paper ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed at current density $30mA/cm^2$ up to 300 V in electrolyte solutions containing $\beta-glycerophosphate$ disodium salt hydrate $(\beta-GP)$ and calcium acetate (CA). Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. All samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. Results and conclusion: The results obtained were summarized as follows: 1. After hydrothermal treatment, the precipitated HA crystals showed the dense fine needle shape. However, with increasing the concentration of electrolyte they showed the shape of thick and short rod. 2. When the dense fine needle shape crystals was appeared after hydrothermal treatment, the precipitation of HA crystals in Hanks' solution was highly accelerated. 3. The crystal structures of $TiO_2$ in anodic oxide film were composed of strong anatase peak and weak rutile peak as analyzed with thin-film X-ray diffractometery. 4. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal in Hanks' solution.

참고문헌 (39)

  1. Kasemo B, Lausmaa J. Metal selection and surface characteristics. In: Branemark PI, Zarb GA, Albrektsson T(eds), Tissue-integrated prostheses, Osseointegration in clinical dentistry. Quintessence, Chicago, 1985;99-116 
  2. Hayashi K, Inadome T, Mashima T, Sugioka Y. Comparison of bone-implant interface shear strength of soild hydroxyapatite and hydroxyapatite-coated titanium implants. J Biomed Mater Res 1993;27:557-563 
  3. Hanawa T, Asami K, Asaoka K. Microdissolution of calcium ions from calcium-ion- implanted titanium. Corros Sci 1996;38:1579-1594 
  4. Ishizawa H, Fujino M, Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995;29:1459-68 
  5. Lemons JE. Hydroxyapatite coating. Clin Orthop 1988;235:220-223 
  6. Wang BC, Lee TM, Chang E, Yang CY. The shear strength and failure mode of plasma-sprayed hydroxyapatite coating to bone: the effects of coating thickness. J Biomed Mater Res 1993;27:1315-1327 
  7. Kokubo T, Mijaji F, Kim HM, Nakamura T. Spontaneous apatite formation on chemically surface treated Ti. J Am Ceram Soc 1996;79:1127-1129 
  8. Yan WQ, Nakamura T, Kobayashi M, Kim HM, Mijaji F. Bonding of chemically treated titanium implants to bone. J Biomed Mater Res 1996;37:267-275 
  9. Kim HM, Mijaji F, Kokubo T, Nakamura T. Bonding strength of bonelike apatite layer to Ti metal substrate. J Biomed Mater Res 1997;38:121-127 
  10. Chung HW, Won DH, Bae TS, Lee MH. Effect of potassium hydroxide treatment of titanium implant on the precipitation of calcium phosphate and tissue compatibility. J Korean Res Soc Dent Mater 2001;28:223-233 
  11. Hanawa T, Ukai H, Murakami K. X-ray photoelectron spectroscopy of calcium-ion-implanted titanium. J Electron Spectrosc 1993;63:347-354 
  12. Hanawa T, Ukai H, Murakami K, Asaoka K. Structure of surface-modified layers of calcium-ion-implanted Ti-6Al-4V and Ti-56Ni. Mater Trans JIM 1995;36:438-444 
  13. Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coating on titanium. Biomaterials 1986;7:97-103 
  14. Ban S, Maruno S, Harada A, Hattori M, Narita K, Hasegawa J. Effect of temperature on morphology of electrochemically-deposited calcium phosphates. Dent Mater J 1996;15:31-38 
  15. Cho KH, Kim MY, Song KY, Bae TS, Lee MH. Effect of electrochemical treatment of titanium on the precipitation of calcium phosphate in a simulated body fluid. J Korean Res Soc Dent Mater 2002;29:263-269 
  16. Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995a;29:65-72 
  17. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995b;29:1071-1079 
  18. Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini NN, Toricelli P, Vicentini B. In vitro and in vivo behavior of Ca- and P-enriched anodized titanium. Biomaterials 1999;20:1587-1594 
  19. Hirata T, Nakamura T, Takashima F, Maruyama T, Taira M, Takahashi J. Studies on polishing of Ag-Pd-Cu-Au alloy with five dental abrasives. J Oral Rehabil 2001;28:773-777 
  20. Kawazoe T, Suese K. Clinical Application of titanium crowns. J Dent Med 1989;30:317-328 
  21. Kuroiwa A, Igarashi Y. Application of pure titanium to metal framework. J Jpn Prosthodont Soc 1998;42:547-558 
  22. Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials 2003;24:213-218 
  23. Iijima D, Toneyama T, Doi H, Hamanaka H, Kurosaki N. Wear properties of Ti and Ti-6Al-7Nb castings for dental protheses. Biomaterials 2003;24:1519-1524 
  24. Wang K. The use of titanium for medical applications in the USA. Mater. Sci. Eng 1996A;213:134-137 
  25. Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998;19:1621-1639 
  26. Niinami M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng 1998A;243:231-236 
  27. Hanawa T. Characterization of surface films formed on titanium in electrolytic solutions. J Jpn Soc Dent Mater Dev 1989;8:832-844 
  28. Ask M, Lausmaa J, Kasemo B. Preparation and surface spectroscopic characterization of oxide film on Ti-6Al-4V. Appl Surf Sci 1989;35:283-301 
  29. Khan M, Williams R, Williams D. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials 1999;20:631-637 
  30. Niinomi M. Fatigue performance and cyto-toxity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 2003;24:2673-2683 
  31. Sarinnaphakorn L, Yoneyama T, Doi H, Kobayashi E, Hamanaka H. Elastic property of Ti-6Al-7Nb alloy castings for removable partial denture. Proceedings of the 5th ISTD, 2001;p12 
  32. Nakagawa M, Matsuya S, Udoh K, Ohta M. Development of titanium alloys with high corrosion resistance in fluoride containing solution. Proceedings of the 5th ISTD, 2001;p16 
  33. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 
  34. Schreckenbath JP, Marx G. Characterization of anodic spark-converted titanium surfaces for biomedical applications. J Mater Sci: Mater Med 1999;10:453-457 
  35. Albrektsson T, Branemark P-I, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-170 
  36. Chehroudi B, Gould TRL, Brunette DM. Effect of grooved titanium coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res 1989;23:1067-85 
  37. von Recum AF. New aspects of biocompability: Motion at the interface. In: Heimke G, Soltesz U, Lee AJC (eds). Clinical Implant Materials, Advances in Biomaterials vol 9, Elsevier Science Publishers BV, Amsterdam 1990;p297-302 
  38. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system $MgO-CaO-SiO_2-P_2O_5$. J Mater Soc 1986;21:536-540 
  39. Kim KN, Bae TS, So JM. Comparison on the calcium phosphate precipitation of NaOH-treated titanium and bioglass-ceramic $CaO-P_2O_5$ system. J Korean Res Soc Dent Mater 2001;28:247-252 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일