• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

단일재 알루미늄과 알루미늄/유리섬유 적층재의 결함 위치에 따른 응력분포 및 균열발생 거동

Stress Distribution and Crack Initiation Behavior due to the Defect Locations in Monolithic Aluminum and Al/Glass Fiber Laminates


Material flaws in the from of pre-existing defects can severely affect the crack initiation. Stress distribution and crack initiation life of engineering materials such as monolithic aluminum alloy and Al/Glass fiber laminate may be different according to the defect location. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic aluminum and Al/Glass fiber laminates under cyclic bending moment. Stress distribution and crack initiation behavior near a circular hole are considered. Results of Finite Element (FE) model indicated the features of different stress field due to the relative defects positions. Especially, the defects positions at ${\theta}=0^{\circ}\;and\;{\theta}=30^{\circ}$ was strongly effective in stress concentration factor ($K_t$) and crack initiation behavior.

참고문헌 (15)

  1. Lawcock, G., Ye, L. and Mai, Y. W., 1997, 'Progressive Damage and Residual Strength of a Carbon Fiber Reinforced Metal Laminate,' Journal of Composite Materials, Vol. 31, No.8, pp. 762-787 
  2. Guo, Y. and Wu, X., 1999, 'Bridging Stress Distribution in Center-Cracked Fiber Reinforced Metal Laminates : Modeling and Experiment,' Engineering Fracture Mechanics, Vol. 63, pp.147-163 
  3. Takamatsu, T., Matsumura, T., Ogura, N., Shimokawa, T. and Kakuta, Y., 1999, 'Fatigue Crack Growth Properties of a GLARE3-5/4 ?Fiber/Metal Laminate,' Engineering Fracture Mechanics, Vol. 63, pp. 253-272 
  4. Marissen, R., 1988, 'Fatigue Crack Growth in ARALL. A Hybrid Aluminum-Ararnid Composite Material, Crack Growth Mechanics and Quantitative Predictions of the Crack Growth Rate,' Report LR-574, Aerospace Eng., Delft Univ. of Tech., the Netherlands 
  5. Song Sam-Hong and Kim Cheol-Woong, 2001, 'The Mixture Ratio Effect of Epoxy Resin, Curing Agent and Accelerator on the Fatigue Behavior of FRMLs,' Transactions of the KSME A, Vol. 25, No.4, pp. 592-601 
  6. Song Sam-Hong and Kim Cheol-Woong, 2001, 'The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment,' Transactions of the KSME, A, Vol. 25, No.8, pp. 1277 -1286 
  7. Song Sam-Hong and Kim Cheol-Woong, 2003, 'Fatigue Crack and Delamination Behavior in the Composite Material Containing a Saw-cut and Circular Hole (1) - Aramid Fiber Reinforced Metal Laminates-,' Transactions of the KSME A, Vol. 27, No.1, pp. 58-65 
  8. Murakami, Y. and Nemat-Nasser, S., 1982, 'Interaction Dissimilar Semi-Elliptical Surface Flaws under Tension and Bending,' Engineering Fracture Mechanics, Vol. 16, pp. 373-386 
  9. Gunnink, J. W., 1990, 'Aerospace ARALL the Advancement in Aircraft Materials,' 35th International SAMPE Symposium, pp. 1708-1721 
  10. Peterson, R. E., 1974, Stress Concentration Factors, John Wiley & Sons, Inc., pp. 1-19 
  11. Lawcock, G., Ye, L. and Mai, Y. W., 1995, 'Novel Fiber Reinforced Metal Laminates for Aerospace Applications - A Review, Part I Background & General Mechanical Properties,' SAMPE Journal, Vol. 31, No.1, pp. 23-31 
  12. Manson, S. S., 1953, 'Behavior of Materials under Conditions of Thermal Stress,' Heat Transfer Symposium, Univ. of Michigan, Engineering Research Institute, pp. 9-75 
  13. Braglia, B. L. and Hertzberg, R. W., 1979, 'Crack Initiation in a High Strength Low-Alloy Steel,' Fracture Mechanics, ASTM STP 677 
  14. Song Sam-Hong and Kim Cheol-Woong, 2003, 'The Analysis of Fatigue Behavior Using the Delamination Growth Rate $(dA_D/da)$ and Fiber Bridging Effect Factor $(F_{BE})$ in AUGFRP Laminates,' Transactions of the KSME A, Vol. 27, No.2, pp. 317-326. 
  15. Parti, O. and Schijve, J., 1993, 'Multiple-site damage in 2024- T3 Alloy Sheet,' International Journal of Fatigue, Vol. 15, No.4, pp. 293-299 

이 논문을 인용한 문헌 (1)

  1. Kim, Cheol-Woong ; Ko, Young-Ho ; Lee, Gun-Bok 2007. "The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate -" 大韓機械學會論文集. Transactions of the Korean Society of Mechanical Engineers. A. A, 31(3): 344~354 

DOI 인용 스타일