$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

ON (α,β)-SKEW-COMMUTING AND (α,β)-SKEW-CENTRALIZING MAPS IN RINGS WITH LEFT IDENTITY

Abstract

Let R be a ring with left identity. Let G : $R{\times}R{\to}R$ be a symmetric biadditive mapping and g the trace of G. Let ${\alpha}\;:\;R{\to}R$ be an endomorphism and ${\beta}\;:\;R{\to}R$ an epimorphism. In this paper we show the following: (i) Let R be 2-torsion-free. If g is (${\alpha},{\beta}$)-skew-commuting on R, then we have G = 0. (ii) If g is (${\beta},{\beta}$)-skew-centralizing on R, then g is (${\beta},{\beta}$)-commuting on R. (iii) Let $n{\ge}2$. Let R be (n+1)!-torsion-free. If g is n-(${\alpha},{\beta}$)-skew-commuting on R, then we have G = 0. (iv) Let R be 6-torsion-free. If g is 2-(${\alpha},{\beta}$)-commuting on R, then g is (${\alpha},{\beta}$)-commuting on R.

참고문헌 (5)

  1. H. E. Bell and J. Lucier, On additive maps and commutativity in rings, Results Math. 36 (1999), 1-8 
  2. H. E. Bell and Q. Deng, On ring epimorphisms with centralizing conditions, Chinese J. Math. 23 (1995), 67-78 
  3. M. Bresar, Commuting maps: a survey, Taiwanese J. Math., to appear 
  4. Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra 23 (1995), 3705-3713 
  5. J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일