• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

나노구조재료의 소성변형 성질의 변형률속도 의존성

Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials


A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

저자의 다른 논문

참고문헌 (20)

  1. R. Z. Valiev, 2002, Materials Science: Nanomaterial Advantage, Nature, vol.419, pp.887-888 
  2. R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, 2002, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., vol.17, pp.5-8 
  3. L. Lu, M. L. Sui, K. Lu, 2000, Superplastic Extensibility of Nanocrystalline Copper at Room Temperature, Science, vol.287, pp.1463-1466 
  4. W. Y. Wang, M. Chen, F. Zhou, E. Ma, 2002, High Tensile Ductility in a Nanostructured Metal, Nature, vol.419, pp.912-914 
  5. Y. M. Wang, E. Ma, 2004, Three Strategies to Achieve Unif orm Tensile Deformation in a Nanostructured Metal, Acta Mater., vol.52, pp. 1699-1709 
  6. H. S. Kim, Y. Estrin, M. B. Bush, 2000, Plastic Deformation Behaviour of Fine-Grained Materials, Acta Mater., vol.48, pp.493-504 
  7. D. G. Morris, 1998, Mechanical Behaviour of Nanostructured Materials, Materials Science Foundations, vol.2 Trans Tech Publications Ltd, Switzerland 
  8. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, H. Gleiter, 2002, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nature Mater., vol.1, pp. 45-49 
  9. V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, 2002, Grain-Boundary Diffusion Creep in Nano-crystalline Palladium by Molecular-Dynamics Simulation, Acta Mater., vol.50, pp. 61-73 
  10. H. S. Kim, 1998, A Composite Model for Mechanical Properties of Nanocrystalline Materials, Scripta Mater., vol.39, pp. I 057-1061 
  11. H. S. Kim, M. B. Bush, 1999, The Effects of Grain Size and Porosity on The Elastic Modulus of Nanocrystalline Materials, Nanostruct. Mater., vol.11, pp. 361-367 
  12. H. S. Kim, M. B. Bush, Y. Estrin, 2000, A Phase Mixture Model of a Particle Reinforced Composite with Fine Microstructure, Mater. Sci. Eng., vol. A276, pp. 175-185 
  13. N. Wang, Z. Wang, K. T. Aust, U. Erb, 1995, Effect of Grain Size on Mechanical Properties of Nanocrystalline Materials, Acta Metall. Mater., vol. 43, pp. 519-528 
  14. Y. Estrin, 1996, Unified Constitutive Laws of Plastic Deformation (Krausz, A. S. and Krausz, K. Eds.), Academic Press, New York, p. 69 
  15. H. S. Kim, S. I. Hong, S. J. Kim, 2001, On the Rule of Mixtures for Predicting the Mechanical Properties of Composites with Homogeneously Distributed Soft and Hard Particles, J. Mater. Proc. Techn., vol. 112, pp. 109-113 
  16. A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, 1989, On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials, Scripta Metall., vol. 23, pp. 1679-1683 
  17. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, 2003, Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel, Acta Mater., vol. 51, pp. 5159-5172 
  18. H. S. Kim, Y. Estrin, 2001, Ductility of Ultrafine Grained Copper, Appl, Phys. Lett., vol.79, pp. 4155-4117 
  19. F. Dalla Torre, H. Van Swygenhoven, M. Victoria, 2002, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., vol. 50, pp. 3957-3970 
  20. Y. Zhu, X. Liao, 2004, Nanostructured Metals: Retaining Ductility, Nature Mater., vol.3, pp.351-352 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일