$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The antinociceptive effect of nicotine administered intracereboventricularly (i.c.v.) or intrathecally (i.t) in several pain models was examined in the present study. We found that i.t. treatment with nicotine (from 5 to 20 g) dose-dependently blocked pain behavior revealed during the second phase, but not during the first phase in the formalin test. In addition, i.c.v. treatment with nicotine (from 0.1 to $10\;{\mu}g$) dose-dependently attenuated pain behavior revealed during both the first and second phases. In addition to the formalin test, nicotine administered i.c.v. or i.t. attenuated acetic acid-induced writhing response. Furthermore, i.c.v. or i.t. administration of nicotine did not cause licking, scratching and biting responses induced by substance P, glutamate, TNF-${\alpha}$(100 pg), IL-$1{\beta}$(100 pg) and INF-${\gamma}$ (100 pg) injectied i.t. The antinociception induced by supraspinally-administered nicotine appears to be more effective than that resulting from spinally administered nicotine. Our results suggest that nicotine administration induces antinociception by acting on the central nervous system and has differing antinociceptive profiles according to the various pain models.

참고문헌 (42)

  1. Benowitz, N. L. and Jacob, P. 3rd, Nicotine metabolism in nonsmokers. Clin. Pharmacol. Ther., 48, 473 (1990) 
  2. Castane, A., Valjent, E., Ledent, C., Parmentier, M., Maldonado, R., and Valverde, O., Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology, 43, 857 (2002) 
  3. DeLeo, J., Colburn, R., and Rickman, A., Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropethy. Brain Res., 759, 50 (1997) 
  4. Hunskaar, S. and H. K., The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 30, 103 (1987) 
  5. Phan, D. V., Doda, M., Bite, A., and Gyorgy, L., Antin ociceptive activity of nicotine. Acta. Physiol. Acad. Sci. Hung., 44, 85 (1973) 
  6. Rau, H., Schweizer, R., Zhuang, P., Pauli, P., Brody, S., Larbig, W., Heinle, H., Muller, M., Elbert, T., and Dworkin, B., Cigarette smoking, blood lipids, and baroreceptor-modulated nociception. Psychopharmacology (Berl), 110, 337 (1993) 
  7. Schafers, M., Geis, C., Brors, D., Yaksh, T., and Sommer, C., Anterograde transport of tumor necrosis factor-alpha in the intact and injured rat sciatic nerve. J. Neurosci., 22, 536 (2002) 
  8. Xu, X. J. H., J. Olsson, T. Kristensson, K. Van Der Meide, P. H., and Wiesenfeld Hallin H. Z., Intrathecal interferon-gamma facilitates the spinal nociceptive flexor reflex in the rat. Neurosci. Lett., 182, 263 (1994) 
  9. Ferreira, J., Santos, A., and Calixto, J., The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology, 38, 835 (1999) 
  10. Damaj, M. I., Fei-Yin, M., Dukat, M., Glassco, W., Glennon, R. A., and Martin, B. R., Antinociceptive responses to nicotinic acetylcholine receptor ligands after systemic and intrathecal administration in mice. J. Pharmacol. Exp. Ther., 284, 1058 (1998) 
  11. Falchi, M., Ferrara, F., Gharib, C., and Dib, B., Hyperalgesic effect of intrathecally administered interleukin-1 in rats. Drugs Exp. Clin. Res., 27, 97 (2001) 
  12. Maleki, N., Garjani, A., Nazemiyeh, H., Nilfouroushan, N., Sadat, A. E., Allameh, Z., and Hasannia, N., Potent antiinflammatory activities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. J. Ethnopharmacol., 75, 213 (2001) 
  13. Zarrindast, M., Potentiation of imiprmine-induced antinociception by nicotine in the formalin test. European Neuropsychopharmacology, 14, 71 (2003) 
  14. Aceto, M. D., Bagley, R. S., Dewey, W. L., Fu, T. C., and Martin, B. R., The spinal cord as a major site for the antinociceptive action of nicotine in the rat. Neuropharmacology, 25, 1031 (1986) 
  15. Vyklicky, L., Bonica, J. J., Liebeskind, J. C., and Albe-Fessard, D. G., Advances in pain Research and Therapy. Adv. Pain Res. The., 3, 727 (1979) 
  16. Clavelou, P., Callel, R., Orliaguet, T., Woda, A., and Raboisson, P., The orofacial formalin test in rats: effects of different formalin concentrations. Pain, 62, 295 (1995) 
  17. Hunskaar, S., Fasmer, O., and H. K., Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Methods, 14, 69 (1985) 
  18. Ahmadiani, A., Hosseiny, J., Semnanian, S., Javan, M., Saeedi, F., Kamalinejad, M., and Saremi, S., Antinociceptive and antiinflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol., 72, 287 (2000) 
  19. Bannon, A. W., Decker, M. W., Kim, D. J., Campbell, J. E., and Arneric, S. P., ABT-594, a novel cholinergic channel modulator, is efficacious in nerve ligation and diabetic neuropathy models of neuropathic pain. Brain Res., 801, 158 (1998) 
  20. Reeve, A. J., Patel, S., Fox, A., Walker, K., and Urban, L., Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain, 4, 247 (2000) 
  21. Hopkins, S. J. and Rothwell, N. J., Cytokines and the nervous system: I. Expression and recognition. Trends Neurosci., 18, 83 (1995) 
  22. Kidd, B. L. and Urban, L. A., Mechanisms of inflammatory pain. Br. J. Anaesth, 87, 3 (2001) 
  23. Choi, S. S., Lee, J. K., and Suh, H. W., Antinociceptive profiles of aspirin and acetaminophen in formalin, substance P and glutamate pain models. Brain Res., 921, 233 (2001) 
  24. Gamae, R. and Saria, A., Nociceptive behavior after intrathecal injections of substance P, neurokinin A and calcitonin generelated peptide in mice. Neurosci. Lett., 70, 143 (1986) 
  25. Abbott, F., Franklin, K., Ludwick, R., and Melzack, R., Apparent lack of tolerance in the formalin test suggests different mechanisms for morphine analgesia in different types of pain. Pharmacol. Biochem. Behav., 15, 637 (1981) 
  26. Sommer, C., Lindenlaub, T., Teuteberg, P., Schafers, M., Hartung, T., and Toyka, K., Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res., 913, 86 (2001b) 
  27. Cumberbatch, M., Herrero, J., and Headley, P., Exposure of rat spinal neurones to NMDA, AMPA and kainate produces only short-term enhancements of responses to noxious and nonnoxious stimuli. Neurosci. Lett., 181, 98 (1994) 
  28. Hunskaar, S., Post, C., Fasmer, O., and Arwestrom, E., Intrathecal injection of capsaicin can be used as a behavioural nociceptive test in mice. Neuropharmacology, 25, 1149 (1986) 
  29. Rashid, M. and Ueda, H., Neuropathy-specific analgesic action of intrathecal nicotinic agonists and its spinal GABAmediated mechanism. Brain Res., 953, 53 (2002) 
  30. Riedel, W. and Neeck, G., Nociception, pain, and antinociception: current concepts. Z. Rheumatol., 163, 404 (2001) 
  31. Sommer, C., Schafers, M., Marziniak, M., and Toyka, K., Etanercept reduces hyperalgesia in experimental painful neuropathy. J. Peripher. Nerv. Syst., 6, 67 (2001a) 
  32. Hylden Jl, W. G., Intrathecal substance P elicits a caudallydirected biting and scratching behavior in mice. Brain Res., 217 (1981) 
  33. Shibata, M., Ohkubo, T., Takahashi, H., and Inoki, R., Modified formalin test: characteristic biphasic pain response. Pain, 38, 347 (1989) 
  34. Hylden Jl, W. G., Intrathecal morphine in mice: a new technique. Euro J. Psychopharmacology, 67, 313 (1980) 
  35. Puig, S. and Sorkin, L. S., Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain, 64, 345 (1996) 
  36. Chung, K. M., Lee, K. C., Choi, S. S., and Suh, H. W., Differential roles of spinal cholera toxin- and pertussis toxin sensitive G proteins in nociceptive responses caused by formalin, capsaicin and substance P in mice. Brain Res. Bull., 54, 537 (2001b) 
  37. Haley, T. J. M. W., Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol., 12, 12 (1957) 
  38. Mattila, M. J., Ahtee, L., and Saarnivaara, L., The analgesic and sedative effects of nicotine in white mice, rabbits and golden hamsters. Ann. Med. Exp. Biol. Fenn., 46, 78 (1968) 
  39. Koster, R., Anderson, M., and Beer, E. J., Acetic acid for analgesic screening. Federal proceeding, 18, 412 (1959) 
  40. Wagner, R., Myers, R., and O'Brien, J., Prosaptide prevents hyperalgesia and reduces peripheral TNFR! expression following TNF-alpha nerve injection. Neuroreport, 9, 2827 (1998) 
  41. Chung, K. M., Lee, K. C., Choi, S. S., and Shu, H. W., Differential roles of spinal cholera toxin- and pertussis toxinsensitive G proteins in nociceptive responses caused by formalin, capsaicin, and substance P in mice. Brain Res. Bull., 537 (2001a) 
  42. Perkins, K. A., DiMarco, A., Grobe, J. E., Scierka, A., and Stiller, R. L., Nicotine discrimination in male and female smokers. Psychopharmacology (Berl) ,116, 407 (1994) 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일