$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Effect of Low Adapted Temperature and Medium Composition on Growth and Erythropoietin (EPO) Production by Chinese Hamster Ovary Cells

Abstract

Temperature and medium composition were changed with the aim of increasing growth and erythropoietin (EPO) production in EPO-producing Chinese hamster ovary (CHO) cells. We used the CHO cell line, IBE, and its derivative, CO5, which over-expresses the first two enzymes of the urea cycle, carbamoyl phosphate synthetase I (CPS I) and ornithine transcar-bamoylase (OTC). When supplements were added to the medium at $33\;^{\circ}C$, the growth of IBE and CO5 cells increased by $27\%\;and;26\%$, respectively and the maximum yield of EPO was increased by $40\%$ in both cell lines. The absolute EPO concentration in the CO5 cells was always $55{\sim}60\%$ higher than in the IBE cells. In addition, when the two cell lines were continuously cultured with supplements at $33\;^{\circ}C$ until their growth rates approached those at $37\;^{\circ}C$, the growth rates of both IBE and CO5 cells increased by $54\%$ and their maximum EPO levels increased by up to $73\%\;and\;56\%$, respectively. Therefore, the growth and EPO expression levels of CO5 cells increased 2.2-fold and 2.6-fold, respectively, compared to those of the IBE cells. These results indicate that adaptation to lower temperature as well as medium supplementation could be important for improving cell growth and EPO production.

저자의 다른 논문

참고문헌 (25)

  1. Barnes, D. and Sato, G., Methods for growth of culture cells in serum-free medium. Analytical. Biochem., 102, 255-270 (1980) 
  2. Raghu, H. M., Nandi, S., and Reddy, S. M., Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media. Vet Rec., 151, 260- 265 (2002) 
  3. Reuveny, S., Velez, D., Macmillan, J. D., and Miller, L., Factors affecting cell growth and monoclonal antibody production in stirred reactors. J. Immunol. Methods, 86, 53-59 (1986) 
  4. Yang, M. and Butler, M., Effect of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol. Bioeng., 68, 370-380 (2000) 
  5. Zanghi, J. A , Schmelzer, A. E., Mendoza, T. P., Knop, R. H., and Miller, W. M., Bicarbonate concentration and osmolality are key determinants in the inhibition of CHO cell polysialylation under elevated pCO(2) or pH. Biotechnol. Bioeng., 65, 182-191 (1999) 
  6. Andersen, D. C. and Goochee C. F., The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cell. Biotechnol. Bioeng., 47, 96-110 (1995) 
  7. Ryu, J. S., Kim, T. K., Chung, J. Y., and Lee, G. M., Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant chinese hamster ovary cell cultures differs among cell lines. Biotechnol. Bioeng., 70, 167-175 (2000) 
  8. Kim, N. Y., Lee, Y. J., Kim, H. J., Choi, J. H., Kim, J. K., Chang, K. H., Kim, J. H., and Kim, H. J., Enhancement of erythropoietin production from Chinese hamster ovary (CHO) Cells by introduction of the urea cycle enzymes, cabamoyl phosphate synthetase I and ornithine transcarbamoylase. J. Microbial Biotechnol., 14, 844-851 (2004) 
  9. Renard, J. M., Spagnoli, R., Mazier, C., Salles, M. F., and Mandine, E., Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems. Biotechnol. Lett., 10, 91-96 (1988) 
  10. Kimura, R. and Miller, W. M., Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol. Bioeng., 52, 152-160 (1996) 
  11. Borys, M. C., Linzer, D. I. H., and Papoutsakis, E. T., Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology, 11, 720-724 (1993) 
  12. Liu, C. H., Chu, I. M., and Hwang, S. M., Factorial designs combined with the steepest ascent method optimize serumfree media for CHO cells. Enzyme and Microbial Technology., 28, 314-321 (2001) 
  13. Butler, M. and Spier, R. E., The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcarrier culture. J. Biotechnol., 1, 187-219 (1984) 
  14. Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L., and Carrondo, M. J. T., Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzyme and Microbial Technology., 27, 43-45 (2000) 
  15. Lin, A. A., Kimura, R., and Miller, W. M., Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol. Bioeng., 42, 339-350 (1993) 
  16. Sikdar, S. K. and Sawant, S. B., Ammonia removal from mammalian cell culture medium by ion-exchange membranes. Sep. Sci. Technol., 29, 1579-1591 (1994) 
  17. Yoon, S. K , Song, J. Y., and Lee, G. M., Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in chinese hamster ovary cells. Biotechnol. Bioeng., 82, 289-298 (2003) 
  18. Glassy, M. C., Tharaken, J. P., and Chau, P. C., Serum-free media in hybridoma culture and monoclonal antibody production. Biotechnol. Bioeng., 32, 1015-1028 (1988) 
  19. Park, H. S., Kim, I. H., Kim, I. Y., Kim, K. H., and Kim, H. J., Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinesehamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media. J. Biotechnol., 8, 1129-1140 (2000) 
  20. Chung, M. I., Lim, M. H., Lee, Y. J., Kim, I. H., Kim, I. Y., Kim, J. H., Chang, K. H., and Kim, H. J., Reduction of ammonia accumulation and improvement of cell viability by expression of urea cycle enzymes in Chinese Hamster Ovary Cells. J. Microbial Biotechnol., 13, 217-222 (2003) 
  21. Furukawa, K. and Ohsuye, K., Effect of culture temperature on a recombinant CHO cell line producing a C-terminalamidating enzyme. Cytotechnology, 26, 153-164 (1998) 
  22. Schneider, Y. J., Marison, I. W., and Stockar, U., The importance of ammonia in mammalian cell culture. J. Biotechnol., 46, 161-185 (1996) 
  23. Yang, M. and Butler, M., Effect of ammonia glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol. Prog., 18, 129-138 (2002) 
  24. Fox, S. R., Patel, U. A., Yap, M. G., and Wang, D. I., Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol. Bioeng., 85, 177-184 (2004) 
  25. Kim, T. K., Ryu, J. S., Chung, J. Y., Kim, M. S., and Lee, G. M., Osmoprotective effect of glycine betaine on thrombopoietin production in hyperosmotic Chinese hamster ovary cell culture: clonal variations. Biotechnol. Prog., 16, 775-781 (2000) 

이 논문을 인용한 문헌 (1)

  1. 2009. "" Biotechnology and bioprocess engineering, 14(4): 406~413 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일