$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Many reports demonstrate that extremely low frequency magnetic fields (ELF MFs, 60 Hz) may be involved in hyperalgesia. In a previous investigation, we suggested that MFs may produce hyperalgesia and such a response may be regulated by the benzodiazepine system. In order to further confirm this effect of MFs, we used diazepam and/or flumazenil with MFs exposure. When testing the pain threshold of rats using hot plate tests, MFs or diazepam ($0.5\;{\mu}g$, i.c.v.; a benzodiazepine receptor agonist) induced hyperalgesic effects with the reduction of latency. These effects were blocked by a pretreatment of flumazenil (1.5 mg/kg, i.p.; a benzodiazepine receptor antagonist). When the rats were exposed simultaneously to MFs and diazepam, the latency tended to decrease without statistical significance. The induction of hyperalgesia by co-exposure to MFs and diazepam was also blocked by flumazenil. However, the pretreatment of GABA receptor antagonists such as bicuculline ($0.1\;{\mu}g$, i.c.v.; a $GABA_A$ antagonist) or phaclofen ($10\;{\mu}g$, i.c.v.; a $GABA_B$ antagonist) did not antagonize the hyperalgesic effect of MFs. These results suggest that the benzodiazepine system may be involved in MFs-induced hyperalgesia.

참고문헌 (23)

  1. Bowery, N. G., $GABA_{B}$ receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci., 10, 401- 407 (1989) 
  2. Frey, A. H., Electromagnetic field interactions with biological systems. FASEB J., 7, 272-281 (1993) 
  3. Gould, J. L., Magnetic field sensitivity in animals. Annu. Rev. Physiol., 46, 585-598. (1984) 
  4. Hillert L., Kolmodin-Hedman B., Hypersensitivity to electricity: sense or sensibility? J. Psychosom. Res., 42, 427-432 (1997) 
  5. Kavaliers, M., Ossenkopp, K. P., and Hirst, M., Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice. Physiol. Behav., 32, 261-264 (1984) 
  6. Mantegazza, P., Parenti, M., Tammiso, R., Vita, P., Zambotti, F., and Zonta, N., Modification of the antinociceptive effect of morphine by centrally administered diazepam and midazolam. Br. J. Pharmacol., 75, 569-572 (1982) 
  7. Matsumoto, R., GABA receptors: are cellular differences reflected in function. Brain Res. Rev., 14, 203-225 (1989) 
  8. Ossenkopp, K. P., Kavaliers, M., Prato, F. S., Teskey, G. C., Sestini, E., and Hirst, M., Exposure to nuclear magnetic resonance imaging procedure attenuates morphine-induced analgesia in mice. Life Sci., 37, 1507-1514 (1985) 
  9. Papi, F., Ghione, S., Rosa, C., del Seppia, C., and Luschi, P., Exposure to oscillating magnetic fields influences sensitivity to electrical stimuli. II. Experiments on humans. Bioelectromagnetics, 16, 295-300 (1995) 
  10. Paxinos, G. and Watson, C., The rat brain in stereotaxic coordinates. 2nd edn., Academic Press, San Diego, (1986) 
  11. Rosland, J. H., Hunskaar, S., and Hole, K., Diazepam attenuates morphine antinociception test-dependently in mice. Pharmacol. Toxicol., 66, 382-386 (1990) 
  12. Costa, E. and Guidotti, A., Molecular mechanisms in the receptor action of benzodiazepines. Annu. Rev. Pharmacol., 19, 531-545 (1979) 
  13. Kavaliers, M., Choleris, E., Prato, F. S., and Ossenkopp, E., Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60 Hz magnetic fields in the land snail. Brain Res., 809, 50-57 (1998) 
  14. Tatsuo, M. A., Salgado, J. V., Yokoro, C. M., and Duarte, I. D., and Francischi, J. N., Midazolam-induced hyperalgesia in rats: modulation via $GABA_{A}$ receptors at supraspinal level. Eur. J. Pharmacol., 370, 9-15 (1999) 
  15. Luger, T. J., Hayashi, T., Lorenz, I. H., and Hill, H. F., Mechanism of the influence of midazolam on morphine antinociception at spinal and supraspinal levels in rats. Eur. J. Pharmacol., 271, 421-431 (1994) 
  16. Jeong, J. H., Choi, K. B., Yi, B. C., Chun, C. H., Sung, K. Y., Sung, J. Y., Kim, J. H., Gimm, Y. M., Huh, I. H., and Sohn, U. D., Effects of extremely low frequency magnetic fields on pain thresholds in mice: roles of melatonin and opioids. J. Auton. Pharmacol., 20, 259-264 (2000) 
  17. Tallman, J. and Gallaher, D., The GABAergic system: a locus of benzodiazepine action. Annu. Rev. Neurosci., 8, 21-24 (1985) 
  18. Adey, W. R., Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev., 61, 435-514 (1981) 
  19. Kavaliers, M. and Ossenkopp, K. P., Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Res., 379, 30-38 (1986) 
  20. Ossenkopp, K. P. and Ossenkopp, M. D., Geophysical variables and behavior: XI. Open-field behaviors in young rats exposed to an elf rotating magnetic field. Psychol. Rep., 52, 343-349 (1983) 
  21. Enna, S. J. and Karbon, E. W., GABA receptors: an overview, In Olson R. W., and Venter J. C. (Eds.). Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. Liss, New York, pp. 41, (1986) 
  22. Niv, D., Davidovich, S., Geller, E., and Urca, G., Analgesic and hyperalgesic effects of midazolam: dependence on route of administration. Anesth. Anag., 7, 1169-1173 (1988) 
  23. Bormann, J., Electrophysiology of $GABA_{A}$ and $GABA_{B}$ receptor subtypes. Trends Neurosci., 11, 112-116 (1988) 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일