$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

참고문헌 (18)

  1. de Bartolo, L., S. G. Jarosch-Von, A. Haverich, and A. Bader (2000) A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: Cell viability and tissuespecific functions. Biotechnol. Prog. 16: 102-108 
  2. Tilles, A. W., H. Baskaran, P. Roy, M. L. Yarmush, and M. Toner (2001) Effect of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol. Bioeng. 73: 379- 389 
  3. Patankar, D. and T. Oolman (1991) Wall-growth hollow fiber reactor for tissue culture: I. Preliminary experiments. Biotechnol. Bioeng. 37: 80-92 
  4. Rowland, M. and T. N. Tozer (1989) Clinical Pharmacokinetics: Concepts an Applications. Lea & Febiger, Philadelphia, USA 
  5. Lanza, R. P., D. H. Butler, K. M. Borland, J. E. Staruk, D. L. Faustman, B. A. Solomen, T. E. Muller, R. G. Rupp, T. Maki, A. P. Monaco, and W. L. Chick (1991) Xeno transplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc. Natl. Acad. Sci. USA 88: 11100-11104 
  6. Gion, T., M. Shimada, K. Shirabe, K. Nakazawa, H. Ijima, T. Matsushita, and K. Funatsu (1999) Evaluation of a hybrid artificial liver using a polyurethane foam packed-bed culture system in dogs. J. Surg. Res. 82: 131-136 
  7. Hughes, R. D. and R. Williams (1996) Use of bioartificial and artificial liver support devices. Sem. Liver Dis. 16: 435-444 
  8. Nyberg, S. L., W. D. Payne, B. Amiot, K. Shirabe, R. P. Remmel, W. S. Hu, and F. B. Cerra (1993) Demonstration of biochemical function by extracorporeal xenohepatocytes in an anhepatic animal model. Transplant. Proc. 25: 1944-1945 
  9. Park, Y. G., H. Iwata, S. Satoh, T. Uesugi, and H.–W. Ryu (2003) Method for evaluating metabolic functions of drugs in bioartificial liver. Biotechnol. Bioprocess Eng. 8: 41-46 
  10. Sakai, Y., K. Naruse, I. Nagashima, T. Muto, and M. Suzuki (1999) A new bioartificial liver using porcine hepatocytes spheroids in high-cell-density suspension perfusion culture: In vivo performance in synthesized culture medium and in 100% human plasma. Cell Transplant. 8: 531- 541 
  11. Sardonini, C. A. and D. DiBiasio (1992) An investigation of the diffusion-limited growth of animal cells around single hollow fibers. Biotechnol. Bioeng. 40: 1233-1242 
  12. Demetriou, A. A., J. Rozga, L. Podesta, E. Lepage, E. Morsiani, A. D. Moscioni, A. Hoffman, M. McGrath, L. Kong, H. Rosen, F. Villamil, G. Woolf, J. Vierling, and L. Makowka (1995) Early clinical experience with a hybrid bioartificial liver. Scand. J. Gastroenterol. 30: 111-117 
  13. Yarmush, M. L., J. C. Dunn, and R. G. Tompkins (1992) Assessment of artificial liver support technology. Cell Transplant. 1: 323-341 
  14. Park, Y. G., Y. S. Son, and H.-W. Ryu (2003) Perfusion model for detoxification of drugs in a bioartificial liver. Int. J. Artif. Organs 26: 224-231 
  15. Kamlot, A., J. Rozga, F. D. Watanabe, and A. A. Demetriou (1996) Review: Artificial liver support system. Biotechnol. Bioeng. 50: 382-391 
  16. Rozga, J., E. Morsiani, H. Fujioka, and A. A. Demetriou (1993) Anhepatic pig-evaluation of a model. J. Hepatol. 18: S72-S79 
  17. Asonuma, K., J. C. Gibert, J. E. Stein, T. Takeda, and J. P. Vacanti (1992) Quantitation of transplanted hepatic mass necessary to cure the gunn rate model of hyperbilirubinemia. J. Pediat. Surg. 27: 298-301 
  18. Sussman, N. L., G. T. Gislason, C. A. Conlin, and J. H. Kelly (1994) The hepatix extracorporeal liver assist device: Initial clinical experience. Artif. Organs. 18: 390-396 

이 논문을 인용한 문헌 (1)

  1. 2005. "" Biotechnology and bioprocess engineering, 10(3): 262~269 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일