$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2 원문보기

Biotechnology and bioprocess engineering : Bbe, v.10 no.1, 2005년, pp.23 - 28  

Wee Young-Jung (School of Biological Sciences and Technology, Chonnam National University) ,  Kim Jin-Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University) ,  Yun Jong-Sun (BioHelix, Biotechnology Industrialization Center) ,  Ryu Hwa-Won (School of Biological Sciences and Technology, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative l...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • Lactobacillus sp. RKY2 [17, 18], which was screened from soybean paste, was used for all experiments. This species was previously deposited to the Korean Collection for Type Cultures (Daejon? Korea) as KCTC 10353BP.

이론/모형

  • 6 mL/min, while the column temperature was maintained at 35°C. Glucose was measured enzymatically by a glu­ cose oxidase peroxidase method using a kit from YD Di­ agnostics (Seoul, Korea). All the experiments were car­ ried out in duplicate and the mean values are reported.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Davison, B. E., R. L. Llanos, M. R. Cancilla, N. C. Redman, and A. J. Hillier (1995) Current research on the genetics of lactic acid production in lactic acid bacteria. Int. Dairy J. 5: 763-784 

  2. Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221-231 

  3. Richter, K. and C. Berthold (1998) Biotechnological conversion of sugar and starch crops into lactic acid. J. Agric. Eng. Res. 71: 181-191 

  4. Yang, Y. J., S. H. Hwang, S. M. Lee, Y. J. Kim, and Y. M. Koo (2002) Continuous cultivation of Lactobacillus rhamnosus with cell recycleing using an acoustic cell settler. Biotechnol. Bioprocess Eng. 7: 357-361 

  5. Varadarajan, S. and D. J. Miller (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol. Prog. 15: 845-854 

  6. Amass, W., A. Amass, and B. Tighe (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47: 89-114 

  7. Vink, E. T. H., K. R. Rabago, D. A. Glassner, and P. R. Gruber (2003) Applications of life cycle assessment to NatureWorksTM polylactides (PLA) production. Polym. Degrad. Stabil. 80: 403-419 

  8. Litchfield, J. H. (1996) Microbiological production of lactic acid. Adv. Appl. Microbiol. 42: 45-95 

  9. Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 18: 41-48 

  10. Miura, S., L. Dwiarti, T. Arimura, M. Hoshino, L. Tiejun, and M. Okabe (2004) Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK- 96-1196. J. Biosci. Bioeng. 97: 19-23 

  11. Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb. Technol. 33: 416-423 

  12. Hofvendahl, K. and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107 

  13. Stiles, M. E. and W. H. Holzapfel (1997) Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29 

  14. Berry, A. R., C. M. M. Franco, W. Zhang, and A. P. J. Middelberg (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol. Lett. 21: 163-167 

  15. Butos, G., A. B. Moldes, J. L. Alonso, and M. Vazquez (2004) Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiol. 21: 143-148 

  16. Hofvendahl, K., E. W. J. van Niel, and B. Hahn-Hagerdal (1999) Effect of temperature and pH on growth and product formation of Lactobacillus lactis ssp. lactis ATCC 19435 growing on maltose. Appl. Microbiol. Biotechnol. 51: 669-672 

  17. Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnol. Bioprocess Eng. 9: 303-308 

  18. Lee, J. H., M. H. Choi, J. Y. Park, H. K. Kang, H. W. Ryu, C. S. Sunwo, Y. J. Wee, K. D. Park, D. W. Kim, and D. Kim (2004) Cloning and characterization of the lactate dehydrogenase genes from Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 9: 318-322 

  19. deMan, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135 

  20. Stainer, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter (1986) The Microbial World. 5th ed., pp. 495-504. Prentice Hall, NY, USA 

  21. Angelis, M. D. and M. Gobbetti (1999) Lactobacillus sanfranciscensis CB1: Manganese, oxygen, superoxide dismutase and metabolism. Appl. Microbiol. Biotechnol. 51: 358- 363 

  22. Bruno-Barcena, J. M., A. L. Ragout, P. R. Cordoba, and F. Sineriz (1999) Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems. Appl. Microbiol. Biotechnol. 51: 316-324 

  23. Akerberg, C., K. Hofvendahl, G. Zacchi, and B. Hahn- Hagerdal (1998) Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl. Microbiol. Biotechnol. 49: 682-690 

  24. Ohara, H., K. Hiyama, and T. Yoshida (1992) Noncompetitive product inhibition in lactic acid fermentation from glucose. Appl. Microbiol. Biotechnol. 36: 773-776 

  25. Hujanen, M., S. Linko, Y. Y. Linko, and M. Leisola (2001) Optimization of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol. 56: 126-130 

  26. Hujanen, M. and Y. Y. Linko (1999) Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45: 307-313 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로