$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

The bioelectrochemical reduction of nitrate in the presence of various mediators including methyl viologen and azure A was studied using a 3-electrode voltammetric system. The catalytic potential for the reduction of the mediators was observed in the reactor, which for methyl viologen and azure A were -0.74 V and -0.32 V, respectively, with respect to the potential of Ag/AgCl reference electrode. This potential was then applied to a working electrode to reduce each mediator for enzymatic nitrate reduction. Nitrite, the product of the reaction, was measured to observe the enzymatic nitrate reduction in the reaction media. Methyl viologen was observed as the most efficient mediator among those tested, while azure A showed the highest electron efficiency at the intrinsic reduction potential when the mediated enzyme reactions were carried out with the freely solubilized mediator. The electron transfer of azure A with respect to time was due to the adhesion of azure A to the hydrophilic surface during the reduction. In addition, the use of the adsorbed mediator on conductive activated carbon was proposed to inhibit the change in the electron transfer rate during the reaction by maintaining a constant mediator concentration and active surface area of the electrode. Azure A showed better than nitrite formation than methyl viologen when used with activated carbon.

참고문헌 (14)

  1. Meller, R. B., J. Ronnenberg, W. H. Campbell, and S. Diekmann (1992) Production of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719 
  2. Narvaez, A., E. Dominguez, I. Katakis, E. Katz, K. T. Ranjit, I. Ben-Dov, and I. Willer (1997) Microperoxidase- 11-mediated reduction of hemoproteins: Electrocatalyzed reduction of cytochrome c, myglobin and hemoglobin and electroanalytic reduction of nitrate in the presence of cytochrome- dependent nitrate reductase. J. Electroanal. Chem. 430: 227-233 
  3. Kirstein, D., L. Kirstein, F. Scheller, H. Borcherding, J. Ronnenberg, S. Diekmann, and P. Steinrucke (1999) Amperometric nitrate biosensors on the basis of Pseudominas stutzeri nitrate reductase. J. Electroanal. Chem. 474: 43-51 
  4. Cosnier, S., B. Galland, and C. Innocent (1997) New electropolymerizable viologens for the immobilization and electrical wiring of a nitrate reductase. J. Electroanaly. Chem. 433: 113-119 
  5. Choi, J. W., Y. S. Nam, and M. Fujihira (2004) Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnol. Bioprocess Eng. 9: 76-85 
  6. Davis, J., D. H. Vaughan, and M. F. Cardosi (1995) Elements of biosensor construction. Enzyme Microb. Technol. 17: 1030-1035 
  7. Yoshimatsu, K., T. Sakurai, and T. Fujiwara (2000) Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett. 470: 216-220 
  8. Ferreyra, N. F., S. A. Dassie, and V. M. Solis (2000) Electroreduction of methyl viologen in the presence of nitrite: Its influence on enzymatic electrodes. J. Electroanal. Chem. 486: 126-132 
  9. Antipov, A. N., N. N. Lyalikova, T. V. Khiznjak, and N. P. L'vov (1999) Some properties of dissimilatory nitrate reductase lacking molybdenium and molibdenium cofactor. Biochem.(Moscow) 64: 483-487 
  10. Yoon, H. C. and H. S. Kim (2004) Bioelectrocatalyzed signal amplification for affinity interactions at chemically modified electrodes. Biotechnol. Bioprocess Eng. 9: 107-111 
  11. Averill, B. A. and J. M. Tiedje (1982) The chemicals mechanism of microbial denitrification. FEBS Lett. 138: 8-11 
  12. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo (2003) Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbial. Biotechnol. 13: 473-476 
  13. Sung, D. W., S. H. Song, J. H. Kim, and Y. J. Yoo (2002) Effect of electron donors on nitrate removal by nitrate and nitrite reductases. Biotechnol. Bioprocess Eng. 7: 112-116 
  14. Park, D. H. and Y. K. Park (2001) Bioelectrochemical denitrification by Pseudomonas so. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411 

이 논문을 인용한 문헌 (1)

  1. 2008. "" Biotechnology and bioprocess engineering, 13(4): 431~435 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일