• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

참고문헌 (32)

  1. Gawande, P. V. and M. Y. Kamat (1998) Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. J. Biotechnol. 66: 165-175 
  2. Lee, H. K. and S. I. Hong (1987) Effect of inhibitor on enzymatic hydrolysis of cellulose. Hwahak Konghak 25: 109-114 
  3. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and Endoglucoanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634 
  4. Sethi, B., S. Mishra, and V. S. Bisaria (1998) Adsorption characteristics of cellulases from a constitutive mutant of Trichoderma reesei. J. Ferment. Bioeng. 86: 233-235 
  5. Tengborg, C., M. Galbe, and G. zacchi (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17: 110-117 
  6. Wu, J. and L. K. Ju (1998) Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649-652 
  7. Converse, A. O., H. Ooshima, and D. S. Burns (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol. 24/25: 67-73 
  8. Ooshima, H., D. S. Burns, and A. O. Converse (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol. Bioeng. 36: 446-452 
  9. Svetlana, V., R. M. Mark, and F. O. David (1997) Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J. Biotechnol. 54: 83-94 
  10. Thomas, M. W. and K. M. Bhat (1988) Methods for measuring cellulase activities. Method. Enzymol. 160: 87-112 
  11. Desai, S. G. and A. O. Converse (1997) Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol. Bioeng. 56: 650- 655 
  12. Ingesson, H., G. Zacchi, B. Yang, A. R. Esteghlalian, and J. N. Saddler (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J. Biotechnol. 88: 177-182 
  13. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83: 1-11 
  14. Allen, S. G., D. Schulman, J. Lichwa, and M. J. Antal Jr (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40: 2934- 2941 
  15. Lee, J. H., S. O. Lee, G. O. Lee, E. S. Seo, S. S. Chang, S. K. Yoo, D. W. Kim, D. F. Day, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111 
  16. Wan Mohtar, Y., M. I. Massadeh, and J. Kader (2000) Solid substrate and submerged culture fermentation of sugar cane bagasse for the production of cellulase and reducing sugars by a local isolate, Aspergillus terreus SUK-1. J. Microbiol. Biotechnol. 10: 770-775 
  17. Bhat, M. K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Adv. 15: 583-620 
  18. Park, E. Y., Y. Ikeda, and N. Okuda (2002) Empirical evaluation of cellulose on enzymatic hydrolysis of waste office paper. Biotechnol. Bioprocess Eng. 7: 268-274 
  19. Min, S. Y., B. G. Kim, C. Lee, H. G. Hur, and J. H. Ahn (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 12: 890-894 
  20. Mansfield, S. D., C. Mooney, and J. N. Saddler (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15: 804-816 
  21. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 12: 1-8 
  22. Ooshima, H., M. Kurakake, J. Kato, and Y. Harano (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl. Biochem. Biotechnol. 31: 253-266 
  23. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki (2003) Thermostable and alkaline-tolerant microbial cellulase- free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340 
  24. Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem. 35: 367-375 
  25. Zhang, S., D. E. Wolfgang, and D. B. Wilson (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol. Bioeng. 66: 35-41 
  26. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microbiol. Biotechnol. 12: 722-728 
  27. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002) The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1, Kor. J. Microbiol. Biotechnol. 30: 172-176 
  28. Kim, E. K., D. C. Irwin, L. P. Walker, and D. B. Wilson (1998) Factorial optimization of a six-cellulase mixture. Biotechnol. Bioeng. 58: 494-501 
  29. Sohn, C. B., M. H. Kim, J. S. Bae, and C. H. Kim (1992) $\beta$-Amylase system capable of hydrolyzing raw starch granules from Bacillus polymyxa No. 26 and bacterial identification. J. Microbiol. Biotechnol. 2: 183-188 
  30. JI, G. E., H. K. Han, S. W. Yun, and S. L. Rhim (1992) Isolation of amylolytic Bifidobacterium sp. Int-57 and characterization of amylase. J. Microbiol. Biotechnol. 2: 85-91 
  31. Gan, Q., S. J. Allen, and G. Taylor (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochem. 38: 1003-1018 
  32. Lin, J, Q., S. M. Lee, and Y. M. Koo (2001) Hydrolysis of paper mill sludge using an improved enzyme system. J. Microbiol. Biotechnol. 11: 362-368 

이 논문을 인용한 문헌 (6)

  1. 2007. "" Biotechnology and bioprocess engineering, 12(2): 147~151 
  2. 2007. "" Journal of microbiology and biotechnology, 17(12): 2076~2080 
  3. Jin, Sheng-De ; Kim, Seong-Jun 2007. "Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes" 한국생물공학회지 = Korean journal of biotechnology and bioengineering, 22(2): 97~101 
  4. 2008. "" Biotechnology and bioprocess engineering, 13(2): 182~188 
  5. 2009. "" Biotechnology and bioprocess engineering, 14(4): 391~399 
  6. Li, Hong-Xian ; Kim, Seong-Jun 2009. "Comparison of cellulolytic enzyme productivities in various semicontinuous culture modes of Trichoderma inhamatum KSJ1" KSBB Journal, 24(1): 70~74 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일