$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

Biotechnology and bioprocess engineering : Bbe, v.10 no.1, 2005년, pp.52 - 59  

Kim Kyoung-Cheol (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University) ,  Kim Si-Wouk (Department of Environmental Engineering, Chosun University) ,  Kim Myong-Jun (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University) ,  Kim Seong-Jun (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, to analyze the kinetics of the enzymatic hydrolysis of foodwastes, the temperature and pH were fixed at the optimum values throughout the experiments, with the enzyme and foodwastes concentrations in the kinetic model considered as important factors. The kinetic model, X = K-tn, where X is conversion ratio (%), t is reaction time (hr), and K and n are empirical constants was introduced.
  • The amylolytic enzymes, composed of a-amylase, P-amylase and glucoamylase, can be combined, and substituted with a-amylase for soluble starch hydrolysis activity. Therefore, a-amylase and FPase activities were monitored as the combined cellulolytic and amylolytic activities, respectively, in this study.
  • This study focused on development of an economical and efficient recovery method or producing reducing sugars from Korean foodwastes for use as carbon and energy sources in various fermentation industries, lb improve the yield and rate of enzymatic hydrolysis of foodwastes, effective saccharification factors, such as substrate concentration, enzyme concentration, reaction time, temperature and pH, will be experimentally optimized. For the kinetics of the enzymatic hydrolysis reaction, the empirical models concerning two variables, the enzyme and foodwastes concentration, will be developed and applied in these kinetics analysis.
  • This study focused on the recovery of useful resources, simultaneously satisfying the treatment of foodwastes. In the composition of foodwastes, polymers with a high reducing ability, that is, with large energy content, such as amylose, cellulose and hemicellulose were converted to glucose and xylose by enzymatic hydrolysis involving various lignocellulolytic enzymes.

대상 데이터

  • ATP and Rest were collected from the storage tanks of apartments and restaurants around Gwangju city, respectively.

이론/모형

  • In this study, the reducing sugars concentration to the reaction time in the enzymatic hydrolysis of foodwastes composed of complex materials was expressed as a function of the power curve equation, which has been used by Wu and Ju [3이 and Park et al. [2이 etc as an empirical model.
  • 0 citric acid buffer and a pertinent amount of each substrate, with the reaction run in a shaking water bath at 50℃, 100 rpm for 48 h. The reducing sugars concentration of the reaction supernatant was measured by the DNS method. The saccharification ratio of pure cellulosic materials was calculated using Eq.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Allen, S. G., D. Schulman, J. Lichwa, and M. J. Antal Jr (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40: 2934- 2941 

  2. Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem. 35: 367-375 

  3. Bhat, M. K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Adv. 15: 583-620 

  4. Converse, A. O., H. Ooshima, and D. S. Burns (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol. 24/25: 67-73 

  5. Desai, S. G. and A. O. Converse (1997) Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol. Bioeng. 56: 650- 655 

  6. Gan, Q., S. J. Allen, and G. Taylor (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochem. 38: 1003-1018 

  7. Gawande, P. V. and M. Y. Kamat (1998) Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. J. Biotechnol. 66: 165-175 

  8. Ingesson, H., G. Zacchi, B. Yang, A. R. Esteghlalian, and J. N. Saddler (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J. Biotechnol. 88: 177-182 

  9. JI, G. E., H. K. Han, S. W. Yun, and S. L. Rhim (1992) Isolation of amylolytic Bifidobacterium sp. Int-57 and characterization of amylase. J. Microbiol. Biotechnol. 2: 85-91 

  10. Kim, E. K., D. C. Irwin, L. P. Walker, and D. B. Wilson (1998) Factorial optimization of a six-cellulase mixture. Biotechnol. Bioeng. 58: 494-501 

  11. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 12: 1-8 

  12. Lee, H. K. and S. I. Hong (1987) Effect of inhibitor on enzymatic hydrolysis of cellulose. Hwahak Konghak 25: 109-114 

  13. Lee, J. H., S. O. Lee, G. O. Lee, E. S. Seo, S. S. Chang, S. K. Yoo, D. W. Kim, D. F. Day, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111 

  14. Lin, J, Q., S. M. Lee, and Y. M. Koo (2001) Hydrolysis of paper mill sludge using an improved enzyme system. J. Microbiol. Biotechnol. 11: 362-368 

  15. Mansfield, S. D., C. Mooney, and J. N. Saddler (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15: 804-816 

  16. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and Endoglucoanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634 

  17. Min, S. Y., B. G. Kim, C. Lee, H. G. Hur, and J. H. Ahn (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 12: 890-894 

  18. Ooshima, H., D. S. Burns, and A. O. Converse (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol. Bioeng. 36: 446-452 

  19. Ooshima, H., M. Kurakake, J. Kato, and Y. Harano (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl. Biochem. Biotechnol. 31: 253-266 

  20. Park, E. Y., Y. Ikeda, and N. Okuda (2002) Empirical evaluation of cellulose on enzymatic hydrolysis of waste office paper. Biotechnol. Bioprocess Eng. 7: 268-274 

  21. Sethi, B., S. Mishra, and V. S. Bisaria (1998) Adsorption characteristics of cellulases from a constitutive mutant of Trichoderma reesei. J. Ferment. Bioeng. 86: 233-235 

  22. Svetlana, V., R. M. Mark, and F. O. David (1997) Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J. Biotechnol. 54: 83-94 

  23. Sohn, C. B., M. H. Kim, J. S. Bae, and C. H. Kim (1992) $\beta$ -Amylase system capable of hydrolyzing raw starch granules from Bacillus polymyxa No. 26 and bacterial identification. J. Microbiol. Biotechnol. 2: 183-188 

  24. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microbiol. Biotechnol. 12: 722-728 

  25. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83: 1-11 

  26. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki (2003) Thermostable and alkaline-tolerant microbial cellulase- free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340 

  27. Tengborg, C., M. Galbe, and G. zacchi (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17: 110-117 

  28. Thomas, M. W. and K. M. Bhat (1988) Methods for measuring cellulase activities. Method. Enzymol. 160: 87-112 

  29. Wan Mohtar, Y., M. I. Massadeh, and J. Kader (2000) Solid substrate and submerged culture fermentation of sugar cane bagasse for the production of cellulase and reducing sugars by a local isolate, Aspergillus terreus SUK-1. J. Microbiol. Biotechnol. 10: 770-775 

  30. Wu, J. and L. K. Ju (1998) Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649-652 

  31. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002) The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1, Kor. J. Microbiol. Biotechnol. 30: 172-176 

  32. Zhang, S., D. E. Wolfgang, and D. B. Wilson (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol. Bioeng. 66: 35-41 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트