• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni- and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][$PF_6$]) and bis[{trifluoromethylsulfonyl} imide] ([BMIM] [$Tf_{2}N$]) were employed as reaction media for the transesterification of n-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor. The conversion yield was increased around $10\%$ in a water/[BMIM][$Tf_{2}N$] bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][$Tf_{2}N$] system. Partition coefficients of the substrates in the water/[BMIM][$Tf_{2}N$] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.

참고문헌 (17)

  1. Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of oils by using immobilized lipase enzyme. Biotechnol. Bioprocess Eng. 4: 57-66 
  2. Persson, M. and U. T. Bornscheuer (2003) Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J. Molec. Catalysis B: Enzymatic B22: 21-27 
  3. Murty, V. R., J. Bhat, and PK. A. Muniswaran (2002) Hydrolisys of rice bran oil using immobilized lipase in a stirred batch reactor. Biotechnol. Bioprocess Eng. 7: 367-370 
  4. Itoh, T., Y. Nishimura, N. Ouchi, and S. Hayase (2003) 1- Butyl-2,3-dimethylimidazolium tetrafluoroborate: The most desirable ionic liquid solvent for recycling use of enzyme in lipase-catalyzed transesterification using vinyl acetate as acyl donor. J. Molec. Catal. B: Enzymatic B26: 41-45 
  5. Belafi-Bako, K., N. Dormo, O. Ulbert, and L. Gubicza (2002) Application of pervaporation for removal of water produced during enzymatic esterification in ionic liquids. Desalination 149: 267-268 
  6. Lozano, P., T. De Diego, D. Carrié, M. Vaultier, and J. L. Iborra (2001) Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol. Lett. 23: 1529-1533 
  7. Chen, C. S. and C. J. Sih (1989) General aspects and optimization of enantioselective biocatalysis in organic solvents: The use of lipase. Angew. Chem. Int. Ed. Eng. 28: 695-707 
  8. van Rantwijk, F., R. M. Lau, and R. A. Sheldon (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21: 131-138 
  9. Yadav, G. D. and A. H. Trivedi (2003) Kinetic modeling of immobilized-lipase catalyzed transesterification of noctanol with vinyl acetate in non-aqueous media. Enzyme Microb. Technol. 32: 783-789 
  10. Park, S. and R. J. Kazlauskas (2001) Improved preparation and use of room-temperature ionic liquid in lipasecatalyzed enantio- and regioselective acylations. J. Org. Chem. 66: 8395-8401 
  11. Lee, J.-H., N.-H. Loc, T.-H. Kwon, and M.-S. Yang (2004) Partitioning of recombinant human granulocytemacrophage colony stimulating factor (hGM-CSF) from plant cell suspension culture in PEG/sodium phosphate aqueous two-phase systems. Biotechnol. Bioprocess Eng. 9:12-16 
  12. Villeneuve, P., J. M. Muderhwa, J. Graille, and M. J. Haas (2000) Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Molec. Catal. B: Enzymatic B9: 113-148 
  13. Seo, W.-Y. and K. Lee (2004) Optimized conditions for in situ immobilization of lipase in aldehyde-silica packed columns. Biotechnol. Bioprocess Eng. 9: 465-470 
  14. Park, S. and R. J. Kazlauskas (2003) Biocatalysis in ionic liquids–advantages beyond green technology. Curr. Opin. Biotechnol. 14: 432-437 
  15. Cull, S. G., J. D. Holbrey, V. Vargas-Mora, K. R. Seddon, and G. J. Lye (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng. 69: 227-233 
  16. Carmichael, A. J. and K. R. Seddon (2000) Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J. Phys. Org. Chem. 13: 591-595 
  17. Bradoo, S., R.K. Saxena, and R. Gupta (1999) Partitioning and resolution of mixture of two lipase from Bacillus stearothermophilus SB-1 in aqueous two-phase system. Process Biochem. 35: 57-62 

이 논문을 인용한 문헌 (7)

  1. 2005. "" Biotechnology and bioprocess engineering, 10(4): 329~333 
  2. 2007. "" Biotechnology and bioprocess engineering, 12(4): 441~445 
  3. 2007. "" Biotechnology and bioprocess engineering, 12(5): 484~490 
  4. 2007. "" Biotechnology and bioprocess engineering, 12(5): 491~496 
  5. 2007. "" Biotechnology and bioprocess engineering, 12(5): 525~530 
  6. 2007. "" Journal of microbiology and biotechnology, 17(4): 650~654 
  7. 2010. "" Biotechnology and bioprocess engineering, 15(4): 608~613 


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일