• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보


Plants enjoy their entire life exactly where they were initially rooted. Because of this fixed life pattern, plants have to devise a different type of strategy than animals to survive the numerous biotic and abiotic challenges. Many different plant hormones that act alone or in concert underpin these mechanisms. Brassinosteroids (BRs) collectively refer to plant-originated $5\alpha-cholestane$ steroids that elicit growth stimulation in nano-or micromolar concentrations. BRs that are biosynthesized using sterols as precursors are structurally similar to the cholesterol derived, mammalian steroid hormones, insect molting hormones and ecdysteroids. BRs have been known for decades to be effective in plant growth promotion. However, definitive evidence for their roles in growth and development remained unclear until the recent characterization of BR dwarf mutants isolated from Arabidopsis and other plants. This review aims to provide a cohesive summary of information obtained from the molecular genetic characterization of mutants that are defective in sterol and BR biosynthetic pathways.

저자의 다른 논문

참고문헌 (54)

  1. Arteca R (1996) Plant growth substances: Principles and applications. Chapman and Hall, New York 
  2. Bishop GJ, Harrison K, Jones JD (1996) The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959-969 
  3. Choe S, Oilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The OWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22.a hydroxylation steps in brassinosteroid biosynthesis, Plant Cell 10: 231-243 
  4. Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445-459 
  5. Fujioka S, Sakurai A (1997) Brassinosteroids. Nat Prod Rep 14: 1-10 
  6. Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130: 930-939 
  7. Kang JG, Yun J. Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625-636 
  8. Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH (1998) The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10: 1677-1690 
  9. Lecain E, Chenivesse X, Spagnoli R, Pompon D (1996) Cloning by metabolic interference in yeast and enzymatic characterization of Arabidopsis thaliana sterol delta 7 -reductase. J Biol Chem 271: 10866-10873 
  10. Lorence MC, Murry BA, Trant JM, Mason JI (1990) Human 3 beta-hydroxysteroid dehydrogenase/delta$^{5-4}$-isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126: 2493 -2498 
  11. Mandava N (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39: 23-52 
  12. Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14: 1017-1031 
  13. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1766 
  14. Clouse SD, Sasse JM (1998) Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49: 427-451 
  15. Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401 
  16. Choe S, Tanaka A, Noguchi T, Fujioka S, Takatsuto S, Ross AS, Tax FE, Yoshida S, Feldmann KA (2000) Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J 21: 431-443 
  17. McNellis TW, Deng XW (1995) Light control of seedling morphogenetic pattern. Plant Cell 7: 1749-1761 
  18. Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123: 93-100 
  19. Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230 
  20. Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BO, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b) The Arabidopsis dwf7/ste1 mutant is defective in the ${\Delta}^7$ sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11 : 207-221 
  21. Choe S, Schmitz RJ, Fujioka S, Takatsuto S, Lee MO, Yoshida S, Feldmann KA, Tax FE (2002) Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3b-like kinase. Plant Physiol 130: 1506-1515 
  22. Sakurai A, Fujioka S (1996) Catharanthus roseus (Vinca rosea): in vitro production of brassinosteroids. In Y Bajaj, ed, Biotechnology in Agriculture and Forestry, Vol 37. Springer-Verlag, Berlin, pp 87-96 
  23. Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WO, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12: 853-870 
  24. Husselstein T, Gachotte D, Desprez T, Bard M, Benveniste P (1996) Transformation of Saccharomyces cerevisiae with a eDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24ethyl sterols, FEBS Lett 381: 87-92 
  25. Thompson MJ, Meudt WJ, Mandava NB, Dutky SR, Lusby WR, Spaulding DW (1982) Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. Steroids 39: 89-105 
  26. Crozier A, Kamiya Y, Bishop GJ, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In B Buchanan, W Gruissem, R Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville 
  27. Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122: 85-98 
  28. Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999) Brassinosteroid/sterol synthesis and plant growth as affected by Ika and Ikb mutations of pea. Plant Physiol 119: 1517-1526 
  29. Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9: 701-713 
  30. Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz 2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213: 716-721 
  31. Asami T, Yoshida S (1999) Brassinosteroid biosynthesis inhibitors. Trends Plant Sci 4: 348-353 
  32. Choe S, Oilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a) The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119: 897-907 
  33. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900-2910 
  34. Jang JC, Fujioka S, Tasaka M, Seto H, Takatsuto S, Ishii A, . Aida M, Yoshida S, Sheen J (2000) A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabldopsis thaliana. Genes Dev 14: 1485-1497 
  35. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131: 287-297 
  36. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of OWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26: 573-582 
  37. He JX, Fujioka S, Li TC, Kang SG, Seto H, Takatsuto S, Yoshida S, Jang JC (2003) Sterols regulate development and gene expression in Arabidopsis. Plant Physiol 131: 1258-1269 
  38. Schaeffer A, Bronner R, Benveniste P, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25: 605-615 
  39. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2: 505 513 
  40. Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276: 25687-25691 
  41. Kim GT, Tsukaya H, Uchirniya H (1998) The ROTUNDIFOLlA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12: 2381-2391 
  42. Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei Gp, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182 
  43. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54: 137-164 
  44. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32: 495-508 
  45. Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol 32: 1007-1014 
  46. Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124: 201-209 
  47. Asami T, Mizutani M, Shimada Y, Goda H, Kitahata N, Sekimata K, Han SY, Fujioka S, Takatsuto S, Sakata K, Yoshida S (2003) Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway. Biochem J 369: 71-76 
  48. Benveniste P (2002) Sterol metabolism. In C Somerville, E Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville 
  49. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14: 2045-2058 
  50. Grove M, Spencer G, Rohwedder W (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216-217 
  51. Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jurgens G (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 14: 1471-1484 
  52. Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Biological activities of biosynthetically-related congeners of brassinolide. Biosci Biotech Biochem 59: 1973-1975 
  53. Grebenok RJ, Ohnmeiss TE, Yamamoto A, Huntley ED, Galbraith DW, Della Penna D (1998) Isolation and characterization of an Arabidopsis thaliana C-8,7 sterol isomerase: functional and structural similarities to mammalian C-8,7 sterol isomerase/emopamil-binding protein. Plant Mol Biol 38: 807-815 
  54. Yokota T (1999) The History of Brassinosteroids: Discovery to Isolation of Biosytnthesis and Signal Transduction Mutants. In A Sakurai, T Yokota, S Clouse, eds, Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo 

이 논문을 인용한 문헌 (5)

  1. 2005. "" Journal of plant biology = 식물학회지, 48(2): 237~244 
  2. 2006. "" Journal of plant biology = 식물학회지, 49(1): 61~69 
  3. 2006. "" Journal of plant biology = 식물학회지, 49(2): 160~166 
  4. 2007. "" Journal of plant biology = 식물학회지, 50(3): 230~240 
  5. 2008. "" Journal of plant biology = 식물학회지, 51(3): 221~226 


원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일