$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

Abstract

In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

참고문헌 (18)

  1. A. Bejancu, CR-submanifolds of a Kohler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142 
  2. D. E. Blair, G. D. Ludden, and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27 (1976), 313-319 
  3. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 3 (1971), 333-340 
  4. U. H. Ki and H. J. Kim, Semi-invariant submanifolds with lift-flat normal connection in a complex projective space, Kyungpook Math. J. 40 (2000), 185-194 
  5. U. H. Ki and H. Song, Jacobi operators on a semi-invariant submanifold of codimension 3 in a complex projective space, Nihonkai Math. J. 14 (2003), 116 
  6. U. H. Ki, H. Song, and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math. J. 11 (2000), 57-86 
  7. R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press (1998(T.E. Cecil and S.S. Chern, eds.)), 233-305 
  8. M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloq. Math. Soc. Janos Bolyai 56 (1989), 574-585 
  9. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata 7 (1978), 509-517 
  10. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1973), 355-364 
  11. H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25 (2001), 279-298 
  12. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19 (1973), 495-506 
  13. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516 
  14. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku 16 (1964), 34-61 
  15. K. Yano and U. H. Ki, On (f, g, u, v, w, ${\lambda}\;{\mu}\;{\nu}$)-structure satisfying ${\lambda}^2+{\mu}^2+{\nu}^2$ = 1, Kodai Math. Sem. Rep. 29 (1978), 285-307 
  16. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser (1983) 
  17. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499 
  18. J. T. Cho and U. H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일