$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

영가철과 피트를 이용한 질산성질소와 트리클로로에틸렌의 제거

Simultaneous Removal of Nitrate and Trichloroethylene by Zero Valent Iron and Peat

대한환경공학회지 = Journal of Korean Society of Environmental Engineers, v.28 no.10, 2006년, pp.1074 - 1081  

민지은 (한양대학교 토목공학과) ,  김미정 (한양대학교 토목공학과) ,  박재우 (한양대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

질산성질소와 트리클로로에틸렌(TCE)을 동시에 제거하고자 이들을 화학적 생물학적으로 환원 및 수착시키는 반응매질로서 영가철과 피트(peat)를 이용하였다. 영가철의 수중산화로 발생된 수소가 질산성질소와 TCE를 환원시켜 두 물질이 제거하는데 TCE의 수착제거가 가능한 피트를 이용하고 그에 따른 혼합미생물의 생분해전자전달의 효과를 이용하였다. 질산성질소의 경우 영가철과 피트혼합매질에서 제거효율이 우수하나 제거기작이 환원에 의존하므로 TCE가 공존시 전자에 대한 경쟁으로 그 제거효율이 감소하였으며 멸균처리한 피트를 사용한 실험군과의 결과비교로 탈질균의 작용을 알 수 있었다. TCE의 경우 영가철이 함유된 매질에서 제거효율이 높으며 질산염 공존이 영향을 미치지 못하였다. 생분해하는 혐기성 미생물군의 존재는 시스템에서 발생한 수소와 메탄가스 분석으로 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

As common pollutants in surface and groundwater, nitrate nitrogen($NO_3-N$) and trichloroethylene(TCE) can be chemically and biologically reduced by zero valent iron(ZVI) and peat soil. In batch microcosm experiments, chemical reduction of TCE and nitrate was supported by hydrogen from ZV...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 수중에 존재하고 이동성이 큰 질산 염과 퇴적층 내 저감되지 않은 염소계 유기화합물로 오염된 수계 등의 환경에서 반응매질로서 ZVI을 사용하여 수중에서 ZVI로부터 발생되는 수소가 TCE의 탈염소화 및 질산염의 환원이 동시에 가능한지 살펴보았다. 이러한 환원반응에서 전자전달의 매개역할을 하거나 탈염소화 및 탈질을 담당하는 미생물의 공급자로서 피트(peat)를 선택하였다.
  •  피트는 생성환경에 따라 다양한 화학적, 생물학적 특징을 갖는 퇴적 토로서 기존에 오염물질로 오염되어있지 않은 것으로서 미 생물의 TCE 분해활성을 미리 확인할 수 없었으나, 토양 유 기물질이 풍부하여 중금속 및 유기 오염물질등의 흡착능력 이 우수한 부식토이며 또한 미호기성 및 혐기적 환경에서 생성될 수 있는 자연매질이며 인근 환경의 특징을 대표하는 미생물 군집을 보유하게 된다. 본 실험에서는 피트의 탈질 및 탈염소화 반응성을 ZVI과 비교하였으며 피트에 생물학적 탈질 및 탈염소화의 반응을 가능케 하는 미생물 종이 존재하는 지의 여부를 확인하는 실험을 수행하였다. 더불어 ZVI 에 의하여 질산염이 환원되며 TCE가 탈염소화 될 때 두 물 질이 공존할 경우 제거효율을 비교하고 반응에 나타나는 변화를 고찰하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Montemurro, F., Maioranaa, M., Ferrial, D., and Convertini, G., 'Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization,' Field Crops Research, 99(2-3), 114- 124(2006) 

  2. Bruce, O. M. and Edward, D. S., 'Hydrogenotrophic denitrification in a microporous membrane bioreactor,' Water Res., 36(19), 4683-4690(2002) 

  3. Chang, C. C., Tseng, S. K., and Huang, H. K., 'Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment,' Bioresource Technol., 69, 53-58(1999) 

  4. Kurt, M., Dunn, I. J., and Bourne, J. R., 'Biological denitrification of drinking water using autotrophic organisms with $H_2$ in a fluidized-bed reactor,' Biotechnol. Bioeng., 29, 493 - 501(1987) 

  5. Dries, D., Liessens, J., Verstraete, W., Stevens, P., de Vos, P., and de Ley, J., 'Nitrate removal from drinking water by means of hydrogenotrophic denitrifiers in a polyurethane carrier reactor,' Water Supply, 6, 181-192( 1987) 

  6. Cooper, D. C., Picardal, F. W., Schmmenlmann, A., and Coby, A. J., 'Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200,' Appl. Environ. Microbiol., 69(6), 3517-3525( 2003) 

  7. Maia, S., Fleming, S., and Alexander, J. H., 'Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification,' Environ. Sci. Technol., 38(6), 1231-1237(2002) 

  8. Kesseru, P., Kiss, I., Bihari, Z., and Polyak, B., 'Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butanovora cells,' Biosource Technol., 87(1), 75 - 80(2003) 

  9. Kielemoes, J., De Boever, P., and Verstraete, W., 'Influence of denitrification on the corrosion of iron and stainless steel powder,' Environ. Sci. Technol., 34(4), 663 - 671(2000) 

  10. Alowitz, M. J. and Schere, M. M., 'Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal,' Environ. Sci. Technol., 36(3), 299 - 306(2000) 

  11. 민지은, 박재우, '영가철과 피트(peat)를 이용한 질산성 질소와 TCE의 제거,' 대한토목학회 정기 학술 대회, 대한토목학회, 제주, pp. 280(2005) 

  12. Lee, H.-J., Chun, B.-S., Kim, W.-C., Chung, M., and Park, J.-W., 'Zero valent iron and clay mixtures for removal of trichloroethylene, Cr(VI), and nitrate,' Environ. Technol., 27(2), 299 - 306(2006) 

  13. Arnolds, W. A. and Roberts, A. L., 'Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with $Fe^o$ particles,' Environ. Sci. Technol., 34(9), 1794-1805(2000) 

  14. Roh, Y., Lee, S., and Elless, M., 'Characterization of corrosion products in the permeable reactive barriers,' Environ. Geol., 40(1-2), 184-194(2000) 

  15. Cord-Ruwisch, R. and Widdel, F., 'Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria,' Appl. Microbiol. Biotechnol., 25(2), 169-174(1986) 

  16. Lorowitz, W. H., Nagle, D. N., and Tanner, R. S., 'Anaerobic oxidation of elemental metals coupled to methanogenesis by Methanobacterium thermoautotrophicum,' Environ. Sci. Technol., 26(8), 1606-1610(1992) 

  17. Rosenthal, H., Adrian, L., and Steiof, M., 'Dechlorination of PCE in the presence of $Fe^o$ enhanced by a mixed culture containing two Dehalococcoides strains,' Chemosphere, 55(5), 661-669(2004) 

  18. Yang, Y., Pesaro, M., Sigler, W., and Zeyer, J., 'Identification of microorganisms involved in reductive dehalogenation of chlorinate ethenes in an anaerobic microbial community,' Water Res., 39(16), 3954-3960(2005) 

  19. Kim, H.-J., Goltz, M. N., Cho, K.-S., Khim, J.-H., Kim, J.-Y., and Park, J.-W., 'Sorption and biodegradation of vapor phase organic compounds with wastewater sludge and food waste compost,' J. Air. Waste. Manag. Assoc., 51(8), 174-185(2001) 

  20. Kao, C. M. and Lei, S. E., 'Using a peat biobarrier to remediate PCE/TCE contaminated aquifers,' Water Res., 34(3), 835- 845(2000) 

  21. Deitsch, J. J., Smith, J. A., Arnold, M. B., and Bolus, J., 'Sorption and desorption rates of carbon tetrachloride and 1,2-Dichlorobenzene to three organobentonites and a natural peat soil,' Environ. Sci. Technol., 32(20), 3196-3177(1998) 

  22. Loeffler, F. E., Tiedje, J. M., and Sanford, R. A., 'Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology,' Appl. Environ. Microbiol., 65(9), 4049-4056(1999) 

  23. Lorah, M. M. and Olsen, L. D., 'Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence,' Environ. Sci. Technol., 33(2), 227-234(1999) 

  24. Kassenga, G., Pardue, J. H., Moe, W. M., and Bowman Bowman, K. S., 'Hydrogen thresholds as indicators of dehalorespiration in constructed threatment wetlands,' Environ. Sci. Technol., 38(4), 1024-1030(2006) 

  25. Daniels, L., Belay N., Rajagopal, B. S., and Weimer, P. J., 'Bacterial methanogenesis and growth from $CO_2$ with elemental iron as the sole source of electrons,' Science, 31(237), 509-511(1987) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트