$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

가버 웨이블릿 신경망 기반 적응 표정인식 시스템

Adaptive Facial Expression Recognition System based on Gabor Wavelet Neural Network

초록

본 논문에서는 6개의 특징점을 이용하는 가버 웨이블릿 신경망 기반 적응 표정인식 시스템을 제안한다. 특징 추출부를 포함하는 초기 네트워크의 구성은 Levenberg-Marquardt 기반의 학습방법이 사용되며, 따라서 특징 추출부 결정에 있어서 경험적 요소를 배재시킬 수 있다. 또한 새로운 사용자에 대한 적응 네트워크를 구성하기 위해서 개선된 보상함수를 가지는 Q-학습과, 비지도 퍼지 신경망 모델을 사용하였다. Q-학습을 통해서는 개인 사용자에 대해 분리도가 좋은 특징벡터를 얻을 수 있는 가버필터 세트를 얻을 수 있으며, 퍼지 신경망을 통해서는 사용자의 얼굴변화에 맞게 인식기를 변화시킬 수 있다. 따라서 제안된 시스템은 사용자의 얼굴변화를 따라갈 수 있는 좋은 적응 성능을 보이고 있다.

Abstract

In this paper, adaptive Facial Emotional Recognition system based on Gabor Wavelet Neural Network, considering six feature Points in face image to extract specific features of facial expression, is proposed. Levenberg-Marquardt-based training methodology is used to formulate initial network, including feature extraction stage. Therefore, heuristics in determining feature extraction process can be excluded. Moreover, to make an adaptive network for new user, Q-learning which has enhanced reward function and unsupervised fuzzy neural network model are used. Q-learning enables the system to ge optimal Gabor filters' sets which are capable of obtaining separable features, and Fuzzy Neural Network enables it to adapt to the user's change. Therefore, proposed system has a good on-line adaptation capability, meaning that it can trace the change of user's face continuously.

참고문헌 (8)

  1. S.B. Gokturk, et aI., 'Model-Based Face Tracking for View-Independent Facial Expression Recognition', Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 272 - 278.,1998 
  2. B. Fasel, 'Multiscale Facial Expression Recognition using Convolutional Neural Networks.' Proceedings of the third Indian Conference on Computer Vision, Graphics and Image processin, 2002 
  3. Y. S. Kim, C. H. Ham and Y. S. Baek, 'A Fuzzy Neural Network Model Solving the Underutilization Problem' Journal of Korea Fuzzy Logic and Intelligent Systems Society, Vol. 11, pp. 354-3.58. 2001 
  4. A. Kapoor, Q. Yuan, R.W. Picard, 'Fully Automatic Upper Facial Action Recognition,' IEEE International Analysis and Modeling of Faces and Gestures, pp. 195 - 202., 1998 
  5. L. Franco, A. Treves, 'A Neural Network Facial Expression Recognition System using Unsupervised Local Processing,' Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis (ISPA 2001), pp. 628 - 632. ,2001 
  6. Gyu-Tae Park, 'A Study on Extraction of Emotion from Facial Image using Soft Computing Techniques', Ph.D Thesis, Dept. of Electrical Engineering and Computer Science, KAIST.1998 
  7. B. Fasel, 'Robust Facial Analysis using Convolutional Neural Networks,' Proceedings of the International Conference on Pattern Recognition, 2002 
  8. Yonsei University et aI., Systems for Recognizing and Synthesizing facial Expressions and Gestures, The Report of the Project supported by Ministry of Science and Technology, G17-A-06 

이 논문을 인용한 문헌 (1)

  1. Lee, Jae Hwan ; Park, Jong Hwan 2014. "Security Analysis of Broadcast Encryption System Based on 2-Subset Difference Method" 방송공학회논문지 = Journal of broadcast engineering, 19(4): 502~509 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일