$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

수복재료가 5급 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원유한요소법적 연구

THE EFFECT OF RESTORATIVE MATERIALS ON THE STRESS DISTRIBUTION OF CLASS V COMPOSITE RESIN RESTORATIONS - A 3D FINITE ELEMENT INVESTIGATION

초록

임상에서 5급 와동의 형태 중에 흔히 발견되는 혼합형 (교합면 쪽은 쐐기형이고 치경부 쪽은 접시형)의 와동이 형성된 상악 제 2 소구치에 170 N의 하중을 가했을 때, 수복 전 후에 나타나는 와동변연부와 와동벽, 그리고 수복물의 응력 분포를 3차원적 유한요소 분석법으로 조사한 결과 다음과 같은 결론을 얻었다. 1. 수복 전에 비해 수복 후 굽힘응력 이 집중되는 백악법랑경계와 와동저 선각부위 에서 응력이 감소하였다. 2. 수복 전에 비해 수복 후 교합면과 치경부의 와동변연과 와동벽에서는 응력이 증가하였다. 3. 혼합형 레진과 혼합형 / 흐름성 레진으로 수복하였을 때 흐름성 레진으로 수복한 경우보다 백악법랑경계와 와동저 선각부위에서 응력이 더 감소하였다. 4. 혼합형 레진과 혼합형 / 흐름성 레진으로 수복하였을때 흐름성 레진으로 수복한 경우보다 교합면과 치경부의 와동변연과 와동벽에서 응력이 더 증가하였다.

Abstract

The purpose of this study was to analyze the stress distribution aspect of unrestored and restored combined shape (wedge shape occulusally and saucer shape gingivally) class V cavity, which found frequently in clinical cases. A maxillary second permolar restored with a combined shape class V composite restorations were modeled using the three dimensional finite element method. Static occlusal load of 170 N was applied on lingual incline of buccal cusp at the angle of $45^{\circ}$ with the longitudinal axis of the tooth. And three dimensional finite element analysis was taken by ANSYS (Version 6.0, Swanson Analysis System Co., Houston, U.S.A) program which represent the stress distribution on unrestored and restored cavity wall and margin. The conclusions were as follows. 1. Compared to the unrestored cavity, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced and in restored cavity. 2. Von Mises stress at the occlusal and cervical cavity margin and wall were increased in restored cavity in comparison with the unrestored cavity. 3. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced more than in the flowable restoration. 4. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the occlusal and cervical cavity margin and wall were increased more than in the flowable restoration.

참고문헌 (35)

  1. Grippo JO, Simring M, Schreiner S. Attrition, abrasion, corrosion and abfraction revisited: A new perspective on tooth surface lesions. J Am Dent Assoc 135(8):1109-1118, 2004 
  2. Minakuchi S, Munoz CA, Jessop N. Effect of flexural load cycling on microleakge of extended root caries restorations. Oper Dent 30(2):234-238, 2005 
  3. 박정길, 허복, 이희주. 와동형태가 5급 와동 수복물의 변연누출에 미치는 영향. 대한치과보존학회지 26(2):162-170, 2001 
  4. 장현주, 이희주, 허복. 쐐기형태의 5급 와동에서 수복재료에 따른 변연미세누출의 비교. 대한치과보존학회지 25(1):56-62, 2000 
  5. Lee HE, Lin CL, Wang CH, Chen Ch, Chang CH. Stresses at the cervical lesion of maxillary premolar - a finite element investigation. J Dent 30(7-8):283-290, 2002 
  6. 손윤희, 조병훈, 엄정문. 와동형태와 충전방법에 따른 Class V 복합레진 수복치의 유한요소법적 응력분석. 대한치과보존학회지 25(1):91-108, 2000 
  7. Kemp-Scholte CM, Davidson CL. Marginal integrity related to bond strength and strain capacity of composite resin restorative systems. J Prosthet Dent 64(6):658-664, 1990 
  8. Bayne SC, Thompson JY, Swift EJ Jr. Stamatiades P, Wilkerson M. A characterization of first-generation flowable composite. J Am Dent Assoc 129(5):567-577, 1998 
  9. Katona TR, Winkler MM. Stress analysis of a bulk-filled Class V light-cured composite resotration. J Dent Res 73(8):1470-1477, 1994 
  10. Rees JS, OIDougherty D, Pullin R. The stress reducing capacity of unfilled resin in a Class V cavity. J Oral Rehabil 26(5):422-427, 1999 
  11. 김인철. 교합력 측정기구에 관한 연구. 종합의학 8:11, 1963 
  12. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Sinkewiz SL, Ginsberg SB. Occlusal forces during chewing-Influences of biting strength and food consistency. J Prosth Dent 46(5):561-567, 1981 
  13. Kuroe T, Caputo AA, Ohata N, Itoh H. Biomechanical effects of cervical lesions and restoration on periodontally compromised teeth. Quintessence Int 32(2):111-118, 2001 
  14. Yazici Ar, Celik C, Ozgunaltay G. Microleakage of different resin composite types. Quintessence Int 35(10):790-794, 2004 
  15. 조인식, 박준일, 권혁춘. 제5급 와동에서 광중합 그래스 아이오노머 수복물의 미세변연누출에 관한 연구. 대한치과보존학회지 23(1):304-313, 1998 
  16. Owens BM, Gallien GS. Noncarious dental 'abfraction' lesion in aging population. Compend Contin Educ Dent 16:552-561, 1995 
  17. Ree JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil 29(2):188-193, 2002 
  18. Thomas CW, Patrick KW, Richard JB. An in vivo study of cuspal fracture. J Prosthet Dent 53(1):38-42, 1985 
  19. Leinfelder KF. Restoration of abfracted lesions. Compendium 15(11):1396-1400, 1994 
  20. Heymann HO, Sturdevant JR, Bayne S, Wilder AD, Sluder TB, Brunson WD. Examining tooth flexure effects on cervical restorations: a two-year clinical study. J Am Dent Assoc 122(5):41-47, 1991 
  21. Fruits TJ, VanBrunt CL, Khajotia SS, Duncanson MG Jr. Effect of cyclical lateral forces on microleakage in cervical resin composite restorations. Quintessence Int 33(3):205-212, 2002 
  22. Litonjua LA, Bush PJ, Andreana S, Tobias TS, Cohen RE. Effects of occlusal load on cervical lesions. J Oral Rehabil 31(3):225-232, 2004 
  23. Palamara D, Palamara JE, Tyas MJ, Messer HH. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 16(6):412-419, 2000 
  24. Perdigao J, Lambrechts P, Van Meerbeek B, Braem M, Tildiz E, Yucel T, Vanherle G. The interaction of adhesive systems with human dentin. Am J Dent 9(4):167-173, 1996 
  25. Gomec Y, Dorter C, Dabanoglu A. Koray F. Effect of resin-based material combination on the compressive and the flexural strength. J Oral Rehabil 32(2):122-127, 2005 
  26. Geramy A, Sharafoddin F. Abfraction: 3D analysis by means of the finite element method. Quintessence Int 34(7):526-533, 2003 
  27. Kuroe T, Itoh H, Caputo AA, Konuma M. Biomechanics of cervical tooth structure lesions and their restoration. Quintessence Int 31(4):267-274, 2000 
  28. Rees JS, Hammadeh M. Undermining of enamel as a mechanism of abfraction lesion formation: a finite element study. Eur J Oral Sci 112(4):347-352, 2004 
  29. Gallien GS, Kaplan I, Owens BM. A review of noncarious dental cervical lesions. Compendium 15(11):1366-1374, 1994 
  30. Yaman SD, Sahin M, Aydin C. Finite element analysis of strength characteristics of various resin based restorative materials in Class V cavities. J Oral Rehabil 30(6):630-641, 2003 
  31. Verdonschot N, Fennis WM, Kuijs RH, Stolk J, Kreulen CM, Creugers NH. Generation of 3-D finite element models of restored human teeth using micro-CT techniques. Int J Prosthodont 14(4):310-315, 2001 
  32. Yettram AL, Wright KW, Pickard HM. Finite element stress analysis of the crowns of normal and restored teeth. J Dent Res 55(6):1004-1011, 1976 
  33. Rees JS. A review of the biomechanics of abfraction. Eur J Prosthodont Restor Dent 8(4):139-144, 2000 
  34. Braga RR, Cesar PF, Gonzaga CC. Tensile bond strength of filled and unfilled adhesives to dentin. Am J Dent 13(2):73-76, 2000 
  35. Rees JS, Hammadeh M, Jagger DC. Abfraction lesion formation in maxillary incisors, canines and premolars: a finite element study. Eur J Oral Sci 111(2):149-154, 2003 

이 논문을 인용한 문헌 (1)

  1. Bae, Sang-Bae ; Cho, Young-Gon ; Lee, Myeong-Seon 2009. "COMPARISON OF MARGINAL MICROLEAKAGE BETWEEN LOW AND HIGH FLOWABLE RESINS IN CLASS V CAVITY" 大韓齒科保存學會誌 = Journal of Korean Academy of Operative Dentistry, 34(6): 477~483 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일