$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

호모그래피와 주성분 분석을 이용한 실루엣 기반 걸음걸이 인식

Silhouette-based Gait Recognition Using Homography and PCA

초록

본 논문에서는 걸음걸이 실루엣 영상을 이용한 걸음걸이 인식 방법을 제안한다. 걸음걸이 특징 정보는 걸음걸이의 방향 변화에 많은 영향을 받는다. 따라서 본 논문에서는 평면 호모그래피를 이용하여 실루엣을 고유시점으로 재구성함으로써 방향변화의 영향을 줄이고자 한다. 이때, 평면 호모그래피는 카메라 보정과 같은 복잡한 계산과정 없이 걸음걸이 시퀀스 정보만을 이용하여 추정된다. 동일인의 걸음걸이 실루엣이라 하더라도 배경 제거시의 에러 등으로 인해 공통적인 특성에서 벗어나는 영역이 존재한다. 각 개인의 동일 특성에서 벗어나는 특성을 분석하기 위하여, 본 논문에서는 주성분 분석 기법을 사용한다. 그러나 일반적인 패턴 분류에 적용되는 주성분 분석 기법과는 달리 본 논문에서는 공통적인 특성에서 벗어나는 정도의 판단과 그에 따르는 가중치 부여 기준으로써 사용한다. 실험결과 제안하는 걸음걸이 인식 기법은 걸음걸이 방향 변화에 강인하고, 분별력을 향상시킬 수 있음을 확인하였다.

Abstract

In this paper, we propose a gait recognition method based on gait silhouette sequences. Features of gait are affected by the variation of gait direction. Therefore, we synthesize silhouettes to canonical form by using planar homography in order to reduce the effect of the variation of gait direction. The planar homography is estimated with only the information which exist within the gait sequences without complicate operations such as camera calibration. Even though gait silhouettes are generated from an individual person, fragments beyond common characteristics exist because of errors caused by inaccuracy of background subtraction algorithm. In this paper, we use the Principal Component Analysis to analyze the deviated characteristics of each individual person. PCA used in this paper, however, is not same as the traditional strategy used in pattern classification. We use PCA as a criterion to analyze the amount of deviation from common characteristic. Experimental results show that the proposed method is robust to the variation of gait direction and improves separability of test-data groups.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일