$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

종방향 진동해석에 비구조적 유한요소 적용

Application of the Unstructured Finite Element to Longitudinal Vibration Analysis

초록

본 연구는 파 해석에 있어서 공간-시간 분할 개념을 도입하여 켈러킨 방법으로 해석하였다. 공간-시간 유한요소법은 오직 공간에 대해서만 분할하는 일반적인 유한요소법보다 간편하다. 비교적 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 방법을 제시하며 가중잔차법이 공간-시간 영역에서 유한요소 정식화에 이용되었다. 큰 시간 간격으로 인하여 문제의 해가 발산하는 경우가 동적인 문제에서 흔히 발생한다. 이러한 결점을 보완한 사각형 공간-시간 요소를 취하여 문제를 해석하고 해의 안정에 대해 기술하였다. 다수의 수치해석을 통하여 이 방법이 효과적 임을 알 수 있었다.

Abstract

This paper analyzes the continuous Galerkin method for the space-time discretization of wave equation. The method of space-time finite elements enables the simple solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period called a time slab. The weighted residual process is used to formulate a finite element method for a space-time domain. Instability is caused by a too large time step in successive time steps. A stability problem is described and some investigations for chosen types of rectangular space-time finite elements are carried out. Some numerical examples prove the efficiency of the described method under determined limitations.

저자의 다른 논문

참고문헌 (11)

  1. Argyris, J.H., Scharpf, D.W.(1989) Finite element in time and space, Nuclear Engineering and Design, 10, pp.456-460 
  2. Axelsson, O., Maubach, J.(1989) A time-space finite element discretization technique for the calculation of the electromagnetic field in ferromagnetic materials, International Journal for Numerical Methods in Engineering, 28, pp.2085-2111 
  3. Bajer, C.I.(1986) Triangular and tetrahedral space-time finite elements in vibration analysis, International Journal for Numerical Methods in Engineering, 23, pp.2031-2048 
  4. Bruch, J.C., Zyvoloski, G.(1974) A finite element weighted residual solution to one-dimensional field problems, International Journal for Numerical Methods in Engineering, 8, pp.481-494 
  5. Hughes, T.J.. Hulbert, G.W.(1987) Spacetime finite element methods for elastodvnamics formulations and error estimates. Computer Methods in Applied Mechanics and Engineering, 66, pp.339-363 
  6. Jang, I.S. et al.(1998) The Derivation of Error Estimates with Various Shape Functions for Time Integration Using Finite Element Approach, Journal of the Computational Structural Engineering Institute of Korea. 11, pp.187-196 
  7. Kim, C.K.(2001) On the Numerical Computation for Solving the Two-Dimensional Parabolic Equations By Space and Time Finite Element Method. JSME International Journal Series B. 44(3). pp.434-438 
  8. Kaczkowski, Z.(1975) The method of finitespace-time elements in dynamics of structures, Journal of Technical Physics, 16, pp.69-84 
  9. Saitoh, T.S. et el.(1994) Time-space method for multidimensional melting and freezing problems, International Journal for Numerical Methods in Engineering, 37, pp.793-1805 
  10. Shakib, F., Hughes, T.J.(1991) A new finite element formulation for computational fluid dynamics: Ix. Fourier analysis of space-time Galerkin/Least-squares algorithms, Computer Methods in Applied Mechanics and Engineering, 66, pp.35-58 
  11. Yu, L.R., Hsu, T.R.(1985) Analysis of heat conduction in solids by space-time finite element method, International Journal for Numerical Methods in Engineering, 21, pp.2001-2012 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일