• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

백서 심실 근세포 L형 $Ca^{2+}$ 전류에 대한 유체압력의 효과

Effect of Fluid Pressure on L-type $Ca^{2+}$ Current in Rat Ventricular Myocytes

약학회지 = Yakhak hoeji v.50 no.2 , 2006년, pp.111 - 117  

Cardiac chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances. To examine a possible role of fluid pressure (FP) in the regulatien of atrial $Ca^{2+}$ signaling we investigated the effect of FP on L-type $Ca^{2+}$ current $(I_{Ca})$ in rat ventricular myocytes using whole-cell patch-clamp technique. FP $(\sim40cm\;H_2O)$ was applied to whole area of single myocytes with electronically controlled micro-jet system. FP suppressed the magnitude of peak $I_{Ca}$ by $\cong25\%$ at 0 mV without changing voltage dependence of the current-voltage relationship. FP significantly accelerated slow component in inactivation of $I_{Ca}$, but not its fast component. Analysis of steady-state inactivation curve revealed a reduction of the number of $Ca^{2+}$ channels available for activity in the presence of FP. Dialysis of myocytes with high concentration of immobile $Ca^{2+}$ buffer partially attenuated the FP-induced suppression of $I_{Ca}$. In addition, the intracellular $Ca^{2+}$ buttering abolished the FP-induced acceleration of slow component in $I_{Ca}$ inactivation. These results indicate that FP sup-presses $Ca^{2+}$ currents, in part, by increasing cytosolic $Ca^{2+}$ concentration.

저자의 다른 논문

참고문헌 (22)

  1. Beuckelmann, D. J. and Wier, W. G. : Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cell. J. Physiol. 405, 233 (1998) 
  2. Kamkin, A., Kiseleva, I., Wagner, K. D., Bohm, J., Theres, H., Gunther, J. and Scholz, H. : Characterization of stretchactivated ion currents in isolated atrial myocytes from human hearts. Pflugers Arch. 446, 339 (2003) 
  3. Ruwhof, C., van Wamel, J. E. T., Noordzij, L. A. W., Aydin, S., Harper, J. C. R. and van der Laarse, A. : Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29, 73 (2001) 
  4. Niggli, E. and Lederer, W. J. : Voltage-independent calcium release in heart muscle. Science 250, 565 (1990) 
  5. Sasaki, N., Mitsuiye, T. and Noma, A. : Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn. J. Physiol. 42, 957 (1992) 
  6. Woo, S. H., Cleemann, L. and Morad, M. : $Ca^{2+}$ current-gated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439 (2002) 
  7. Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. : Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800 (1989) 
  8. Sham, J. S. K., Cleemann, L. and Morad, M. : Functional coupling of $Ca^{2+}$ channels and ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 92, 121 (1995) 
  9. Lakatta, E. G. : Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413 (1993) 
  10. Komuro, I., Kaida, T., Shibazaki, Y., Kurabayashi, M., Katoh, Y., Hoh, E., Takaku, F. and Yazaki, Y. : Stretching cardiac myocytes stimulates protooncogene expression. J. Biol. Chem. 265, 3595 (1990) 
  11. Bode, F., Sachs, F. and Franz, M. R. : Tarantula peptide inhibits atrial fibrillation. Nature 409, 14 (2001) 
  12. Nazir, S. A. and Lab, M. J. : Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 31, 52 (1996) 
  13. Li, G.-R., Zhang, M., Satin, L. S. and Baumgarten, C. M. : Biphasic effects of cell volume on excitation-contraction coupling in rabbit ventricular myocytes. Am. J. Physiol. 282, H1270 (2002) 
  14. Copper, G., Kent, R. L., Uboh, C. E., Thompson, E. W. and Marino, T. A. : Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J. Clin. Invest. 75, 1403 (1985) 
  15. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth F. J. : Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85 (1981) 
  16. Lee, S. Y., Lee, C. O., Morad, M. and Woo, S. H. : Modulation of atrial excitation-contraction coupling by flow-mediated shear stress. Biophys. J. 88, 139a (2005) 
  17. Woo, S. H., Risius, T., Javaheri, A. and Morad, M. : Effect of shear stress on local and focal $Ca^{2+}$ signaling and membrane current in rat atrial myocytes. Biophys. J. 86, 107a (2004) 
  18. Adachi-Akahane, S., Cleemann, L. and Morad, M. : Crosssignaling between L-type $Ca^{2+}$ channels and ryanodine receptors in rat ventricular myocytes. J. Gen. Physiol. 108, 435 (1994) 
  19. Hongo, K. and LeGuennec, J. Y. : Changes in $[Ca^{2+}]_i,\;[Na^+]_i$ and $Ca^{2+}$ current in isolated rat ventricular myocytes following an increase in cell length. J. Physiol. 491, 609 (1996) 
  20. Cleemann, L. and Morad, M. : Role of $Ca^{2+}$ channel in cardiac excitation-contraction coupling in the rat: evidence from $Ca^{2+}$/ transients and contraction. J. Physiol. 432, 283 (1991) 
  21. Kohl, P., Hunter, P. and Noble, D. : Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol. 71, 91 (1999) 
  22. Matsuda, N., Hagiwara, N., Shoda, M., Kasanuki, H. and Hosoda, S. : Enhancement of the L-type $Ca^{2+}$ current by mechanical stimulation in single rabbit cardiac myocytes. Circ. Res. 78, 650 (1996) 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음


원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일