$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

특징점들의 적응적 선택에 근거한 B-spline 곡선근사

B-spline Curve Approximation Based on Adaptive Selection of Dominant Points

Abstract

This paper addresses B-spline curve approximation of a set of ordered points to a specified toterance. The important issue in this problem is to reduce the number of control points while keeping the desired accuracy in the resulting B-spline curve. In this paper we propose a new method for error-bounded B-spline curve approximation based on adaptive selection of dominant points. The method first selects from the given points initial dominant points that govern the overall shape of the point set. It then computes a knot vector using the dominant points and performs B-spline curve fitting to all the given points. If the fitted B-spline curve cannot approximate the points within the tolerance, the method selects more points as dominant points and repeats the curve fitting process. The knots are determined in each step by averaging the parameters of the dominant points. The resulting curve is a piecewise B-spline curve of order (degree+1) p with $C^{(p-2)}$ continuity at each knot. The shape index of a point set is introduced to facilitate the dominant point selection during the iterative curve fitting process. Compared with previous methods for error-bounded B-spline curve approximation, the proposed method requires much less control points to approximate the given point set with the desired shape fidelity. Some experimental results demonstrate its usefulness and quality.

저자의 다른 논문

참고문헌 (21)

  1. Farin, G. Curves and Surfaces for CAGD. Morgan Kaufmann, New York, 2002 
  2. Saux, E. and Daniel, M., 'Data Reduction of Polynomial Curves Using B-splines', Computer-Aided Design, Vol, 31, No.8, pp. 507-515, 1999 
  3. Fang, L. and Gossard, D. C., 'Multidimensional Curve Fitting to Unorganized Data Points by Nonlinear Minimization', Computer-Aided Design, Vol. 27, No.1, pp. 48-58, 1995 
  4. 김형철, '체적 등의 구속조건하에서 단면곡선들로부터 B-spline Skinning을 사용한 곡면 디자인', 한국 CAD/CAM학회 논문집, 제3권, 제2호, pp. 87-102, 1998 
  5. Lyche, T. and Morken, K., 'Knot Removal for Parametric B-spline Curves and Surfaces', Computer Aided Geometric Design, Vol. 4, No.3, pp. 217-230, 1987 
  6. Lyche, T. and Morken, K., 'A Data-reduction Strategy for Splines with Applications to the Approximation of Functions and Data', lMA Journal of Numerical Analysis, Vol. 8, pp. 185-208, 1988 
  7. Hoschek, J. and Lasser, D. Fundamentals of Computer Aided Geometric Design. A K Peters, London, 1993 
  8. Hamann, B. and Chen, J. L., 'Data Point Selection for Piecewise Linear Curve Approximation', Computer Aided Geometric Design, Vol. 11, No.3, pp. 289-301, 1994 
  9. Rogers, D. F. and Fog, N. G, 'Constrained B-spline Curve and Surface Fitting', Computer-Aided Design, Vol. 21, No. 10, pp. 641-648, 1989 
  10. Li, W., Xu, S., Zhao, G. and Goh, L. P., 'A Heuristic Knot Placement Algorithm for B-spline Curve Approximation', Computer-Aided Design & Applications, Vol. 1, No. 1-4, pp. 727-732, 2004 
  11. Park, H., 'An Error-bounded Approximate Method for Representing Planar Curves in B-splines', Computer Aided Geometric Design, Vol. 21, No.5, pp. 479-497, 2004 
  12. Huttenlocher, D. P., Klanderman, G. A. and Rucklidge, W. J., 'Comparing Images Using the Hausdorff Distance', IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 15, No.9, pp. 850-863, 1993 
  13. Liu, G. H., Wong, Y. S., Zhang, Y. F. and Loh, H. T., 'Adaptive Fairing of Digitized Data with Discrete Curvature', Computer-Aided Design, Vol. 34, No. 4, pp. 309-320, 2002 
  14. Piegl, L. and Tiller, W. The NURBS Book. Springer-Verlag, New York, 1995 
  15. Piegl, L. A., 'Ten Challenges in Computer-aided Design', Computer-Aided Design, Vol. 37, No.4, pp. 461-470, 2004 
  16. Park, H. and Kim, K., 'Smooth Surface Approximation to Serial Cross-sections', Computer-Aided Design, Vol. 28, No. 12, pp. 995-1005, 1996 
  17. Sarkar, B. and Menq, C. H., 'Parameter Optimization in Approximating Curves and Surfaces to Measurement Data', Computer Aided Geometric Design, Vol. 8, No.4, pp. 267-290, 1991 
  18. Razdan, A., 'Knot Placement for B-spline Curve Approximation', Technical Report, Arizona State University, 1999, http://prism.asu.edu/publications.html 
  19. 박형준, 김광수, '에너지 최소화에 근거한 B-spline curve fitting을 이용한 근사적 lofting', 한국 CAD/CAM학회 논문집. 제4권. 제1호. 00. 32-42, 1999 
  20. Laurent-Gengoux, P. and Mekhilef, M., 'Optimization of a NURBS Representation', Computer-Aided Design, Vol. 25, No. 11, pp. 699-710, 1993 
  21. Park, H., Kim, K. and Lee S.C., 'A Method for Approximate NURBS Curve Compatibility Based on Multiple Curve Refitting', Computer-Aided Design, Vol. 32, No.4, pp. 237-252, 2000 

이 논문을 인용한 문헌 (1)

  1. Lee, Ahyun ; Lee, Joo-Ho ; Lee, Joo-Haeng 2014. "Sampling-based Control of SAR System Mounted on A Simple Manipulator" 한국CAD/CAM학회논문집 = Transactions of the Society of CAD/CAM Engineers, 19(4): 356~367 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일