$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Many of statistical experimental designs have multiple goals. It is often impractical to use the single-objective criterion for this purpose. It is necessary to modify the existing optimum experimental design criteria. There exist three criteria handling this problem in general: compound, constrained, maxi-min approach. This paper extends Kahng and Kim's idea to develop another approach to incorporate several experimental design criteria in accordance of their importance in practical way. Furthermore this paper investigate its relationship with the maxi-min approach. It shows logically that the often realized infeasibility can be still avoided with the rank of importance of the objectives intact.

참고문헌 (27)

  1. 김영일 (1993). D-와 이분산 G-최적을 중심으로 한 오차-로버스트적 실험계획법, 응용통계연구, 제6권 2호, 303-309 
  2. 김영일, 강명욱 (2002). Multiple Constrained Optimal Experimental Design. 한국통계학회논문집, 제9권 3호, 619-627 
  3. Atkinson, A.C. (1972). Planning experiments to detect inadequate regression models. Biometrika, Vol. 59, 275-293 
  4. Atkinson, A.C. and Bogacka, B. (1997). Compound D-and $D_{s-} $-optimum designs for determining the order of a chemical reaction. Technometrics, Vol. 39. 347-356 
  5. Atwood, C.L. (1969). Optimal and Efficient Designs of Experiments. The Annals of Mathematical Statistics, Vol. 40, 1570-1602 
  6. Box, G.E.P. and Draper, N.R (1959). A basis for the selection of a response surface design. Journal of the American Statistical Association, Vol. 54, 622-653 
  7. Box, G.E.P. and Draper, N.R. (1975). Robust Design. Biometrika, Vol. 62, 347-352 
  8. Cook, R.D. and Wong, W.K. (1994). On the equivalence between constrained and compound optimal designs. Journal of the American Statistical Association, Vol. 89, 687-692 
  9. Cook, R.D. and Fedorov, V.V. (1995). Constrained optimization of experimental design with discussion. Statistics, Vol. 26, 129-178 
  10. Fedorov, V.V. (1972). Theory of Optimal Experiemnts. Academic Press, New York 
  11. Huang, Y.C. (1996). Multiple-objective optimal designs. Doctor of Public Health Dissertation, Department of Biostatistics, School of Public Health, UCLA 
  12. Huang, Y.C, and Wong, W.K. (1998a). Sequential construction of multiple -objective designs. Biometrics, Vol. 54, 188-197 
  13. Huang, Y.C. and Wong, W.K. (1998b). Multiple-objective designs. Journal of Biopharmaceutical Statistie, Vol. 8, 635-643 
  14. Lee, C.M.S. (1987). Constrained optimal designs for regression models. Communications in Statistics, Part A-theory and Methods, Vol. 16, 765-783 
  15. Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York 
  16. Silvey, S.D. (1980). Optimal Design. Chapman Hall, New York 
  17. Stigler, S.M. (1971) Optimal experimental design for polynomial regression. Journal of the American Statistical Association, Vol. 66, 311-318 
  18. Wong, W.K. (1995). A graphical approach for constructing constrained D-and L - optimal designs using efficiency plots. Journal of Statistical Simulation and Computations, Vol. 53, 143-152 
  19. Wong, W.K. (1999). Recent advances in multiple-objective design strategies. Statistica Neerlandica, Vol. 53, 257-276 
  20. Zhu, W., Ahn, H. and Wong, W.K. (1998). Multiple-objective optimal designs for the logit model. Communications in Statistics-Theory and Methods, Vol. 27, 1581-1592 
  21. 염준근, 남기성 (2000). A Study on D-Optimal Design Using the Genetic Algorithm. 한국통계학회논문집, 제7권 1호, 357-370 
  22. Studden, W.J, (1982). Some robust-type D-optimal designs in polynomial regression. Journal of the American Statistical Association, Vol. 66, 311-318 
  23. Lauter, E. (1976). Optimal multipurpose designs for regression models. Mathmatische Operationsforsli und Statistics, Vol. 7, 51-68 
  24. Imhof, L. and Wong, W.K. (1999). A graphical method for finding maximin designs. Biometrics, Vol. 54, 188-197 
  25. Lauter, E. (1974). Experimental planning in a class of models. Mathematishe Operationsforshung und Statistik, Vol. 5, 673-708 
  26. Lee, C.M.S. (1998). Constrained optimal designs. Journal of Statistical Planning and Inierence, Vol. 18, 377-389 
  27. Dette, H, and Franke, T. (2000). Constrained $D_1$ - and D-optimal designs for polynomial regression. Ruhr- Universitat Bochum technical paper 

이 논문을 인용한 문헌 (1)

  1. 2007. "" 한국통계학회 논문집 = Communications of the Korean Statistical Society, 14(3): 531~540 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일