$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

GLOBAL COUPLING EFFECTS ON A FREE BOUNDARY PROBLEM FOR THREE-COMPONENT REACTION-DIFFUSION SYSTEM

Abstract

In this paper, we consider three-component reaction-diffusion system. With an integral condition and a global coupling, this system gives us an interesting free boundary problem. We shall examine the occurrence of a Hopf bifurcation and the stability of solutions as the global coupling constant varies. The main result is that a Hopf bifurcation occurs for global coupling and this motion is transferred to the stable motion for strong global coupling.

저자의 다른 논문

참고문헌 (25)

  1. D. Battogtokh, M. Hildebrand, K. Krischer, and A.S. Mikhailov, Nucleation kinetics and global coupling in reaction-diffusion systems, Phys. Rep. 288 (1997), 435-456 
  2. M. Bode and H. -G. Purwins, Pattern formation in reaction-diffusion systems- dissipative solitons in physical systems, Phys. D 86 (1995), no. 1-2, 53-63 
  3. X. -F. Chen, Generation and propagation of interfaces in reaction-diffusion systems, Trans. Amer. Math. Soc. 334 (1992), no. 2, 877-913 
  4. P. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics Vol 53, SIAM, 1988 
  5. P. Fife and J. Tyson, Target patterns in a realistic model of the Belousov- Zhabotinskii reaction, J. Chem. Phys. 73 (1980), no. 5, 2224-2237 
  6. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445-466 
  7. Y. M. Ham, A Hopf bifurcation in a free boundary problem depending on the spatial average of an activator, International Journal of Bifurcation and Chaos 13 (2003), no. 10, 3135-3145 
  8. Y. M. Lee, R. Schaaf, and R. Thompson, A Hopf bifurcation in a parabolic free boundary problem, J. Comput. Appl. Math. 52 (1994), no. 1-3, 305-324 
  9. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer, New York-Berlin, 1981 
  10. S. Koga, Y. Kuramoto, Localized Patterns in Reaction-Diffusion Systems, Prog. Theor. Phys. 63 (1980), no. 1, 106-121 
  11. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984 
  12. M. Meinhardt, Models of Biological Pattern Formation, Academic Press, London, 1982 
  13. M. Meixner, P. Rodin, and E. Scholl, Global control of front propagation in gate- driven multilayered structures, Phys. Status Solidi (B) 204 (1997), no. 1, 493-496 
  14. J. D. Murray, Mathematical Biology, Springer, Berlin, 1985 
  15. J. Nagumo, S. Arimoto, and S. Yoshisawa, An active pulse transmission line simulating nerve axon, Proc. IRE. 50 (1962), 2061-2070 
  16. Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations, SIAM J. Math. Anal. 18 (1987), no. 6, 1726-1770 
  17. T. Ohta, M. Mimura, and R. Kobayashi, Higher-dimensional localized patterns in excitable media, Phys. D 34 (1989), no. 1-2, 115-144 
  18. C. Radehaus, R. Dohmen, H. Willebrand, and F. J. Niedernostheide, Model for current patterns in physical systems with two charge carriers, Phys. Rev. A. 42 (1990), 7426-7446 
  19. K. Sakamoto, Spatial homogenization and internal layers in a reaction-diffusion system, Hiroshima Math. J. 30 (2000), no. 3, 377-402 
  20. I. Schebesch and H. Engel, Self-Organization in Activator-Inhibitor Systems: Semiconductors, Gas Discharges and Chemical Active Media, Wissenschaft and Technik-Verlag, Berlin, 1996 
  21. M. Suzuki, T. Ohta, M. Mimura, and H. Sakaguchi, Breathing and wiggling motions in three-species laterally inhibitory systems, Phys. Rev. E(3) 52 (1995), no. 4, part A, 3654-3655 
  22. R. Woesler, P. Schutz, M. Bode, M. Or-Guil, and H. -G. Purwins, Oscillations of fronts and front pairs in two- and three-component reaction-diffusion systems, Phys. D 91 (1996), no. 4, 376-405 
  23. H. Willebrand, M. Or-Guil, M. Schilke, H. -G. Purwins, and Yu. A. Astrov, Experimental and numerical observation of quasiparticle like structures in a distributed dissipative system, Phys. Lett. A 177 (1993), no. 3, 220-224 
  24. Y. Nishiura and M. Mimura, Layer oscillations in reaction-diffusion systems, SIAM J. Appl. Math. 49 (1989), no. 2, 481-514 
  25. Y. M. Ham, Internal layer oscillations in FitzHugh-Nagumo equation, J. Comput. Appl. Math. 103 (1999), no. 2, 287-295 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일