$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

몇 년동안 게껍질이 풍부하게 있었던 밭토양에서 강한 키틴분해능력을 가진 Trichoderma 곰팡이를 분리하였다. 분리된 곰팡이의 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence 분석과 형태학적 특징을 살펴본 결과 Trichoderma asperellum으로 동정되었고, 이를 Trichoderma asperellum T-5 (TaT-5)로 명명하였다. 이 곰팡이는 chitianse와 ${\beta}$-1,3-glucanase같은 lytic enzyme을 분비하며, 키틴배지 상에서 6가지의 항 곰팡이성 물질을 생산했다. R. solani가 원인인 오이의 모잘록병에 대해 TaT 5의 방제효과를 보기 위해서 TaT-5 배양액(TA), chitin medium(CM), 증류수(DW)를 씨를 심은 후 10일 째에 각 pot에 관주했다. 그리고 관주 1주일 후에 R. solani의 균사를 갈아서 각 pot에 주었다. 실험기간 동안에 오이의 지상부와 지하부 생체중은 다른 처리구에 비하여 TA 처리구가 더 많이 증가하였다. 오이 잎에서 PR-protein (chitianse, ${\beta}$-1,3-glucanase) 활성은 R. solani 감염 후 CM과 DW에서 증가를 보였고, TA 처리구에서는 증가하다가 감소하는 경향을 보였다. 뿌리에서는 모든 처리구가 감소하는 경향을 보였지만 TA 처리구가 CM과 DW 처리구보다 감소하는 정도가 적었다. 오이의 잎과 뿌리에서 lignification related enzyme(POD, PPO, PAL)활성은 R. solani 감염 초기에는 증가하다가 점점 감소하는 경향을 보였다. 이러한 결과들은 TaT-5에 의하여 생산된 lytic enzymes와 항 곰팡이성 물질들이 오이에 R. solani의 공격을 줄여준다고 생각된다.

Abstract AI-Helper 아이콘AI-Helper

A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperel...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 5 mM potassium ferricyanide). Chitinase activity was calculated by measuring O.D. at 420 nm, and these data were compared with data from a NAG standard curve for NAG concentration calculation. One unit of chitinase activity was defined as the amount of enzyme that liberated 1 μmol of NAG per h at 37℃.
  • Cucumber seedlings were grown at 27℃ in an artificially illuminated room with a 16 hrs (hours) photoperiod. Plants were harvested at 0, 1, 2, 3, 5, 7, 8, 9, 11 and 13 days after inoculation T. asperellum T-5 (TA). Each harvested Plants was then carefully washed in running tap water, and fresh weight of shoots and roots was measured.
  • The purposes of the research are to investigate lytic enzymes and antifungal substances released by T. asperellum T-5 (TaT-5) and to explain changes of PRproteins and lignification-related enzymes induced in cucumber plants in response to TaT-5 and R. solan causing damping off.

대상 데이터

  • Microorganism isolation Soils were collected from the field enriched with crabshell in Yeonggwang, Korea. Soils were serially diluted with sterile water until a rate of 10-5, inoculated on chitin agar medium containing colloidal chitin 0.
  • The isolated fungus was cultured in laminarin broth medium containing laminarin 0.5% ; Na2HPO4 0.2% ; KH2PO4 0.1% : NaCl 0.05% ; 0.1% ; NH4Cl 0.1% ; MgSO4·7H2O 0.05% ; CaCl2·2H2O 0.05% ; Yeast Extract 0.05% ; Agar 2% (pH 5) at 26℃ for 9 days on the 170 rpm shaking incubator. During shaking incubation, samples were taken at 1, 2, 3, 5, 7, 9 days.

이론/모형

  • , Japan) and it was eluted with stepwise gradient of water methanol (100:0, 50:50, 30:70, 0:100, v/v). Each fraction of the elute was concentrated using a evaporator, and the antifungal activity of each fraction against R. solani was conformed using the paper disk agar diffusion method. The 70% methanol and 100% methanol elute, which had strong antifungal activity, was purified using sephadex LH-20 column chromatography (25-100μ, SIGMA, Sweden) and it was eluted two times with methanol at a flow rate of 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Benitez, T., Rincon, A.M., Limon, M.C. and Codon, A.C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbial. 7, 249-260 

  2. Bara, M.T.F., Lima, A.L. and Ulhoa, C.J. 2003. Purification and characterization of an exo- $\beta$ -1, 3-glucanase produced by Trichoderma asperellum. FEMS MicrobioL Lett. 219, 81-85 

  3. Chen, C, Belanger, R.R., Benhamou, N., and Paulitz, T.C. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidennatum. Physiol. Mol. Plant Pathol. 56, 13-23 

  4. Caruso, C, Chilosi, G., Caporale, C. Leonardi, L., Bertini, L., Magro, P., and Buonocore, V. 1999. Induction of pathogenesis related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 140, 107-120 

  5. Claydon, N., Allan, M., Hanson, J.R., and Avent, A.G. 1987. Antifungal alkyl pyrones of Trichoderma harzianum. Transactions of the British Mycological Soc. 88, 503-513 

  6. Dennis, C., and Webster, J. 1971. Antagonistic properties of species groups of Trichoderma. II. Production of volatile antibiotics. Transactions of the British Mycological Soc. 57, 41-48 

  7. EI Shora, H.M. 2002. Properties of phenylalanine ammonia lyase from marrow cotyledons. Plant Sci. 162, 1-7 

  8. Enkerli, J., Felix, G., and Boller, T. 1999. Elicitor activity of fungal xylanase does not depend on enzymatic activity. Plant Physiol. 121,391-398 

  9. Endo, A., Hasumi, K., Sakai, K., and Kanbe, T. 1985. Specific inhibition of glyceraldehydes-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J. Antibiot. 38, 920-925 

  10. Ghisalberti, E.L., and Sivasithamparam, K. 1991. Antifungal antibiotics produced by Trichoderma spp. Soil Biol, Biochem. 23, 1011-1020 

  11. Howell, C.R. 1998. The role of antibiosis in biocontroL In: Harman GE, Kubicek C.P. (eds) Trichoderma & Gliocladium, vol. 2. Taylor & Francis, Padstow, pp 173-184 

  12. Howell, C.R. 2003. Mechanisms Employed by Trichoderma species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. Plant dis. 87, 4-10 

  13. Hoffland, E. Hakulinen, J., and Pelt, J. 1996. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86, 757-762 

  14. Inbar, J. Abramski, M. Coen, D., and Chet, l. 1994. Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. Eur. J. Plant Pathol. 100, 337-346 

  15. Inbar, J., and Chet, I. 1995. The role of recognition in the induction ?of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141,2823-.2829 

  16. Jung, W.J., An, K.N., Jin, Y.L., Park, R.D., Lim, K.T., Kim, K.Y., and Kim, T.H. 2003. Biological control of damping-off caused by Rhizoctonia solani using chitinase producing PA.Cnibacillus illinoisensis KJA 424. Soil BioI. Biochem. 35, 1261-1264 

  17. Jung, W.J., Jin, Y.L., Kim, Y.C., Kim, K.Y, Park, R.D., and Kim, T.H. 2004. Inoculation of PA.Cnibacillus illinoisensis alleviates root mortality, activates of lignification-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici. BioI. Control. 30, 645-652 

  18. Kim, S.J. 2006. Biocontrol of lite Blight (Phytophthora capsici) in pepper by chitin broth containing multitude of chitinolytic bacteria. A Master's Thesis, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea 

  19. Kleifeld, O., and Chet, I. 1992. Trichoderma harzianum interaction with plants and effect on growth response. Plant Soil 144, 267-272 

  20. Lee, H.J., Park, K.H., Shim, J.H., Park, R.D., Kim, Y.W., Cho, J.Y., Hwangbo, H., Kim, Y.C, Cha, G.S., Krishnan, H.B., and Kim, K.Y. 2005. Quantitative Changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtillus HJ927. J. Microbiol. Biotechnol. 15, 1073-1079 

  21. Lingappa, Y., and Lockwood, J.L. 1962. Chitin media for selectived culture of actinomycetes. Phytopathology 52, 317-323 

  22. Lorito, M. 1998. Chitinolytic enzymes and their genes. In Trichoderma and Gliocladium (Kubicek CP & Harman GE, eds), pp. 73-99. Taylor & Francis, London 

  23. Lawrence, C.B., Joosten, M.H.A.J., and Tuzun, S. 1996. Differential induction of athogenesis-related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance. Physiol. Mol. Plant P. 48, 361-377 

  24. Lieckfeldt, E., Samuels, G.J., Nirenberg, H.I., and Petrini, O. 1999. A morphological and Mol.ecular perspective of Trichoderma wiride : Is it one or two species? Appl. Environ. Microb. 65, 2418-2428 

  25. Mohammadi, M., and Kazemi, H. 2002. Change in peroxidase and polyphenol oxidase acrivities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162, 491-498 

  26. Mitchell, R, and Alexander, M. 1961. The mycolytic phenomenon and biological control of Fusarium in soil. Nature 190,109-110 

  27. Monte, E. 2001. Understanding Trichoderma : between biotechnology and microbial ecology. Int. Microbiol. 4, 1-4 

  28. Nampoothiri, K.M., Baiju, T.V., Sandhya, C, Sabu, A., Szakacs, G., and Pandey, A. 2004. Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem. 39, 1583-1590 

  29. Nandakumar, R., Babu, S., Wiswanathan, R., Raguchander, T., and Samiyappan, R. 2001. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil BioI. Biochem. 33, 603-612 

  30. Okuda, T., Fujiwara, A., and Fujiwara, M. 1982. Correlation ?between species of Trichoderma and production patterns of isonitrile antibiotics. Agr. Biol. Chem. 46, 1811-1822 

  31. Ordentlich, A., Elad, Y, and Chet, I. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78, 84-88 

  32. Paulitz, T., and Belanger, R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39, 103-133 

  33. Pow, M.J., Cordier, C, Dumas Gaudot, E., Gianinazzi, S., Barea, J.M., and Azcon Aguilar, C 2002. Localized versus systemic effect of arbscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53, 525-534 

  34. Rey, M., Delgado jarana, J., and Benitez, T. 2001. Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Appl. Microbiol. Biot. 55, 604-608 

  35. Russell, J., Tweddell, Suha, H., Jabaji Hare, and Pierre, M. Charest. 1994. Production of chitinases and $\beta$ -1. 3-glucanses by Stachybotrys elegans, a Mycoparasite of Rhizoctonia solani. Appl. Environ. Microb. 60, 489-495 

  36. Sanz, L., Montero, M., Redondo, J., Liobell, A., and Monte, E. 2005. Expression of an $\beta$ -1, 3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J. 272, 493-499 

  37. Singh, P.P., Shin, Y.C., Park, C.S., and Chung, Y.R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89.92-99 

  38. Silva, H.S.A., Romeiro, R.S., Macagnan, D., Halfeld Vieira, B.A., Pereira, M.C.B., and Mounteer, A. 2004. Rhizobacterial induction of systemic resistance in tomato plants : non specific protection and increase in enzyme activities. Biol. control 29, 288-295 

  39. Suarez, B., Rey, M., Castillo, P., Monte, E., and Liobell, A. 2004. Isolation and characterization of PRA I. a trypsin like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biot. 65, 46-55 

  40. Tuzun, S. 2001. The relationship between pathogen-induced systemic resistance (ISR) and multigenic (horizontal) resistance in plants. Eur. J. of Plant Pathol. 107, 85-93 

  41. Viterbo, A., Haran, S., Friesem, Ramot, O., and Chet, I. 2001. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol. Lett. 200, 169-174 

  42. Viterbo, A., Montero, M., Ramot, O., Friesem, D., Monte, E., Llobell, A., and Chet, I. 2002. Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr. Genet. 42, 114-122 

  43. Wang, S.L., Shih, I.L., Wang, C.H., Tseng, K.C, Chang, W.T., Ywu, Y.K., Ro, J.J., and Wang, C.L. 2002. Production of antifungal compounds from chitin by Bacillus substilits. Enzyme Microb. Tech. 31, 321-328 

  44. Yedidia, I., Benhamou, N., and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microb. 65,1061-1070 

  45. Yedidia, I., Benhamou, N., Kapulnik, Y., and Chet, I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38, 863-873 

  46. Zhang, W., Dick, W.A., and Hoitink, H.A.J. 1996. Compostinduced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology 86, 1066-1070 

  47. Zhao, H.C., Zhao, H., Wang, B.C., and Wang, J.B. 2005. Effect of local stress induction on resistance-related enzymes in cucumber seeding. Colloids and Surfaces B: Biointerfaces 43,37-42 

  48. Zheng, H.Z., Kim, Y.W., Lee, H.J., Park, R.D., Jung, W.J., Kim, Y.C., Lee, S.H., Kim, T.H., and Kim, K.Y. 2004. Quantitative changes in PR proteins and antioxidative enzymes in response to Glomus intra radices and Phytophthora capsid in pepper. J. Microbiol. Biotechn. 14, 553 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로