검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
많은 경우에 분류데이터의 생성은 사람의 시간과 노력에 의존하기 때문에 많은 비용과 시간을 요구한다. 이에 반하여 미분류 데이터는 거의 비용을 들이지 않고 무제한의 데이터를 쉽게 획득할 수 있다. 따라서 기계학습에 있어서 이러한 미분류 데이터를 이용하여 분류학습의 성능을 향상시킬 수 있는 준감독자(semi-supervised)학습 방법이 최근 관심을 끌고 있다. 본 논문에서는 미분류 데이터가 분류학습의 성능향상에 마치는 영향을 분석하기 위하여 나이브 베이지안의 환경에서 미분류 데이터를 이용한 학습방법을 제시하고 이를 이용하여 미분류 데이터의 효용성을 실험적으로 조사하였다. 미분류 데이터는 나이브 베이지안의 환경에서 분류데이터의 숫자가 적을 때 특히 많은 효과를 보임을 알 수 있었다.
In many applications, an enormous amount of unlabeled data is available with little cost. Therefore, it is natural to ask whether we can take advantage of these unlabeled data in classification learning. In this paper, we analyzed the role of unlabeled data in the context of naive Bayesian learning. Experimental results show that including unlabeled data as part of training data can significantly improve the performance of classification accuracy. The effect of using unlabeled data is especially important in case labeled data are sparse.
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일